Alkaline pretreatment for practicable production of ethanol and xylooligosaccharides

Viviane Marcos Nascimento 1 , 2 , Anny Manrich 2 , Paulo Waldir Tardioli 2 , 3 , Roberto de Campos Giordano 2 , 3 , George Jackson de Moraes Rocha 1 , and Raquel de Lima Camargo Giordano 2 , 3
  • 1 Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Giuseppe Máximo Scolfaro Street, 10.000 Campinas - S.P., Brazil PO Box 6170, ZC 13083-970
  • 2 Graduate Program in Chemical Engineering - Federal University of São Carlos - PPGEQ-UFSCar, PO Box 676, São Carlos, São Paulo, Brazil
  • 3 Chemical Engineering Department - Federal University of São Carlos, DEQ-UFSCar, PO Box 676, ZC 13565-905, São Carlos, São Paulo, Brazil


The economics for production of secondgeneration (2G) ethanol from sugarcane bagasse in large scale, competing with the cogeneration of electric energy, is still not consolidated. In this scenario, the key for feasibility may be the biorefinery concept, a multiproduct industry using biomass fractions to produce energy, chemicals and by-products. Xylooligosaccharides (XOS) are oligomers of xylose often used as additives in food, animal feeds, and drugs. The effect of NaOH pretreatment on the recovery of xylan for XOS production from sugarcane bagasse under different conditions, namely 121°C, 4-7% NaOH loading, was investigated. The best condition was 4% NaOH and 60 min of reaction, achieving 55% of xylan extraction, without monomer production. In order to produce XOS, soluble and immobilized xylanases were used to hydrolyze commercial birchwood xylan (as control) and the sugarcane bagasse xylan. The immobilized endoxylanase produced XOS with 37% of xylobiose and 20% of xylotriose (w/w). The small production of xylose clearly indicated the purity of the xylan extracted from sugarcane bagasse. The biocatalyst had more than 90% of its activity preserved after 5 reaction cycles. The results showed the suitability of sugarcane bagasse as a raw material for production of ethanol and of XOS using immobilized xylanase.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar – Safra 2014/2015, Brasília, 2015, 1, 1-29, Available from: http://www., accessed in August 13, 2015.

  • [2] Pandey A., Nigan P., Soccol C.R.., Soccol V.T., Singh D., Mohan R., Advances in microbial amylases, Biotechnol. Appl. Biochem., 2000, 31, 135-152.

  • [3] Rocha G.J.M., Martín C., Silva V.F.N., Gómez E. O., Gonçalves, A.R., Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification, Bioresour. Technol., 2012, 111, 447-452.

  • [4] Furlan F.F., Tonon R., Pinto F.H.P.B., Costa C.B.B., Cruz A.J.G., Giordano R.L.C., Giordano R.C., Bioelectricity versus bioethanol from sugarcane bagasse: is it worth to be flexible? Biotechnol. Biofuels, 2013, 6, 142, 1-12.

  • [5] Bragatto J., Segato F., Squina F.M., Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis, Ind. Crops Prod., 2013, 51, 123-129.

  • [6] Chandel A.K., Antunes F.A.F., Silva M.B., da Silva, S.S., Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis, Biotechnol. Biofuels, 2013, 6, 102, 1-11.

  • [7] Aachary A.A., Prapulla S.G., Xylooligosaccharides (XOS) as an emerging prebiotics: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications, Compr. Rev. Food. Sci. Food. Saf., 2011, 10, 2-16.

  • [8] Gullón P., González-Muñoz M.J., Parajó, J.C., Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes, Biores. Technol., 2011, 102, 6112-6119.

  • [9] FAO - Food and Agriculture Organization of the United Nations. FAO technical meetings on prebiotics: food quality and standards service (AGNS). Rome: Food and Agricultural Org. Available from: p 1–11, acessed in: jan, 20th 2014.

  • [10] Roberfroid M., Prebiotic: The concept revisited, J. Nutr., 2007,137, 830S-837S.

  • [11] Tuohy K. M., Rouzaud G.C., Brück W.M., Gibson G.R., Modulation of the human gut microflora towards improved health using prebiotics--assessment of efficacy, Curr. Pharm. Des., 2005, 11(1), 75-90.

  • [12] Rycroft, C.E., Jones M.R., Gibson G.R., Rastall R.A., A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 2001, 91(5),878 887.

  • [13] Samanta A.K., Jayapal N., Senani S., Kotle A.P., Sridhar M., Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora, Braz. J. Microbiol., 2013, 44(1), 1-14.

  • [14] Carrasco C., Baudel H.M., Sendelius J., Modig T., Roslander C., Galbe M., et al., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse, Enzyme Microb. Technol., 2010, 46 (2), 64-73.

  • [15] Wyman, C. E., What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 2007, 25 (4), 153–157.

  • [16] Qing, Q., Li, H.,Kumar, R., Wyman, C. E. Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment- Chapter 19: In: Wyman, C. E., Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals , Wiley Series, 2013.

  • [17] Somerville, C., Youngs, H., Taylor, C., Davis, S. C., Long, P. S. Feedstocks for lignocellulosic biofuels. Science, 2010, 329 (5993), 790-792.

  • [18] Garrote, G., Dominguez, H., Parajo, J. C.. Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J Food Eng, 2002, 52, 211–218.

  • [19] Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios E, Parajo, J. C., et al., Hydrothermally treated xylan rich by-products yield different classes of xylooligosaccharides. Carbohydr Polym, 2002, 50, 47–56.

  • [20] Liu J., Zhou P., Liu H., Wu K., Xiao W., Gong Y., Lin J., Liu Z, Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase, Bioresour. Technol., 2014, 163, 390-394.

  • [21] Mirahmadi K., Kabir M.M., Jeihanipour A., Karimi K., Taherzadeh M.J, Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production, Bioresources, 2010, 5(2), 928-938.

  • [22] Zhu J., Zhu Y., Jiang F., Xu Y., Ouyang J., Yu S., An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell, Carbohydrate Research, 2013, 382, 52-57.

  • [23] Jayapal N., Samanta, A.K., Kolte A.P., Senani S., Sridhar, M., Suresh, K.P et al., Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production, Ind. Crops Prod., 2013, 42, 14-24.

  • [24] Saha B.C, Hemicellulosic Bioconversion, J. Ind. Microbiol. Biotechnol., 2003, 30, 279-291.

  • [25] Sharma M., Kumar A., Xylanases: An Overview, Br. Biotechnol. J., 2013, 3 (1), 1-28.

  • [26] Polizelli, M. L., Rizzatti, A.C., Monti, R., Terenzi, H.F., Jorge, J. A., Amorim, D. S., Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67(2005), 577-591.

  • [27] Manrich A., Galvão C. M., Jesus C.D., Giordano R.C., Giordano, R.L., Immobilization of trypsin on chitosan gels: use of different activation protocols and comparison with other supports, Int. J. Biol. Macromol., 2008, 43, 54-61.

  • [28] Manrich A., Komesu A., Adriano W.S., Tardioli P.W., Giordano, R.L.C., Immobilization and stabilization of xylanase by multipoint covalent attachment on agarose and on chitosan supports, Appl. Biochem. Biotechnol., 2010, 161, 455-467.

  • [29] López-Gallego F., Montes T., Fuentes M., Alonso N., Grazu V., Betancor, L., et al., Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports, J. Biotechnol ., 2005, 116, 1-10.

  • [30] Mateo C., Grazu V., Palomo J. M., Lopez-Gallego F., Fernandez- Lafuente R., Guisan J.M. Immobilization of enzymes on heterofunctional epoxy supports, Nature Protocols, 2007, 2 (5), 1022-1033.

  • [31] Gouveia E.R., Nascimento R.T., Souto-Maior A.M, Rocha G.J.M., Validação de metodologia para caracterização química de bagaço de cana-de-açúcar, Química Nova, 2009, 32, 1500-1503.

  • [32] Rocha G.J.M., Silva F.T., Araújo G.T., Curvelo A.A.S., A fast and accurate method for determination of cellulose and polyoses by HPLC. In: Proceedings of the V Brazilian Symposium on the Chemistry of Lignin and Other Wood Components (1997, Curitiba, Brazil), Brazil, 1997, 5, 113-115.

  • [33] Laver M.L., Wilson, K.P., Determination of carbohydrates in wood pulp products, Tappi J., 1993, 76 (6), 155-158.

  • [34] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton, D., Determination of sugars, byproducts, and degradation products in liquid fraction process samples, National Renewable Energy Laboratory, 2008.

  • [35] Yang B., Wyman, C.E., Characterization of the degree of polymerization of xylooligomers produced by flow through hydrolysis of pure xylan and corn stover with water, Bioresour. Technol, 2008, 99, 5756-5762.

  • [36] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 1959, 31, 426-428.

  • [37] Guisán J. M., Agarose-aldehyde gels as supports for immobilization- stabilization of enzymes, Enzyme Microb. Technol., 1988, 10, 375-382.

  • [38] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, 1976, 72, 248-254.

  • [39] Ghose T.K., Measurement of Cellulase Activities. Pure Appl. Chem, 1987, 59, 257-268.

  • [40] Narciso G. V., Simionato K. P., Arruda P. V., Sene L., Felipe M. G. A., Palha de sorgo: Biomassa lignocelulósica potencial para utilização em bioprocessos que envolvem o aproveitamento da fração hemicelulósica, In: XVII Simpósio Nacional de Bioprocessos (05-09 Agosto 2009, Natal, Brazil), 2009.

  • [41] Rocha G.J.M., Martin C., Soares I.B., Souto Maior A.M., Baudel H.M., Moraes, C.A., Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production, Biomass Bioenergy, 2011, 35, 663-670.

  • [42] Doner L.W., Hicks, K.B., Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction, Cereal Chem., 1997, 74 (2), 176-181.

  • [43] Fengel, D., Wegener, G., Wood: Chemistry Ultrastructure, Reactions. Walter de Gruyter, Berlin, 1989.

  • [44] Syed, H. U., Nebamoh, I.P., Germgård, U. A comparison of cold and hot caustic extraction of a spruce dissolving sulfite pulp prior to final bleaching. Appita, Vol 66 No 3, 229-233, ,2013

  • [45] Kuo, Y-N, Hong, J. Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym. Adv. Technol. 2005; 16: 425–428

  • [46] Quing, Q., Yang, B., Wyman, C., Xylo-oligomers are strong inhibitors of cellulose hydrolysis by enzymes,” Bioresc. Technol., 2010, 101(24), 9624-9630.

  • [46] Qing, Q., Li, H., Kumar, R., Wyman, C. E., Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment: In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals , First Edition. Edited by Charles E. Wyman, 2013, pp. 391-415.

  • [47] Milessi, T. S. S., Kopp, W., Rojas, M.J., Manrich, A., Baptista- Neto, A., Tardioli, P.W., Giordano, R.C., Fernandez-Lafuente, R., Guisan, J.M., Giordano, R.L.C. Immobilization and stabilization of an endoxylanase from Bacillus subtillis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2015, in press

  • [48] Jorgensen, H; Olsson, L. Production of cellulases by Penicillium brasilianum. IBT 20888- Effect of substrate on hydrolytic performance, v. 38, p. 381-390, 2006.

  • [49] Lu, Y. P; Yang B; Gregg D; Saddler J.N; Mansfield S.D. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology, v. 98, p. 641-654, 2002

  • [50] Berlin, A; Gilkes, N; Kilburn, D; Bura, R; Markov, A; Skomarovsky, A; Okunev, O; Gusakov, A; Maximenko, V; Gregg, D; Sinitsyn, A; Saddler, J. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substratesevidence for the role of accessory enzymes. Enzyme and Microbial Technology, v. 37, p. 175-184, 2005.

  • [51] Weiss N., Börjesson J., Saaby L., Meyer P., Meyer A. S., Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling, Biotechnol. Biofuels, 2013, 6:5.

  • [52] Rocha, G.J.M., Nascimento, V.M., Silva, V.F.N.D., Corso, D.L.S., Gonc¸ alves, A.R., 2014.Contributing to the environmental sustainability of the second generationethanol production: delignification of sugarcane bagasse with sodiumhydroxide recycling. Ind. Crops Prod. 59, 63–68.


Journal + Issues