Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb.

Marta Olech 1 , Renata Nowak 1 , Renata Los 2 , Jolanta Rzymowska 3 , Anna Malm 2 , and Katarzyna Chrusciel 1
  • 1 Department of Pharmaceutical Botany, Medical University, 20-093, Lublin, Poland
  • 2 Department of Pharmaceutical Microbiology, Medical University, 20-093, Lublin, Poland
  • 3 Chair and Department of Biology and Genetics, Medical University, 20-093, Lublin, Poland


The study was designed to determine the total phenolic, flavonoid, o-dihydroxyphenol, tannin, and carotenoid content as well as the antiradical, antitumor and antimicrobial properties of two types of galenic preparations from Rosa rugosa Thunb. Such extracts obtained from various plant parts have not been studied to date. Our findings have revealed high antiradical activity of the examined galenic preparations, with root, leaf and flower extracts (IC50 ranging from 0.27 to 0.19 mg of dry extract per mg DPPH·) showing the greatest potential. MIC and MBC values against 8 reference bacterial strains (i.e. Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis) were determined. Generally, tinctures were found to be more active than teas with MIC ranging from 0.08 to 2.5 mg mL−1 and 0.31 to 1.25 mg mL−1, respectively. Anticancer activities against ovarian (TOV-112D), cervical (HeLa), breast (T47D) and lung cancer (A549) cell lines were evaluated using the BrdU test. The data obtained demonstrate considerable impact of polyphenols on the anticancer activity of extracts (ethanolic, in particular).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hashidoko Y., The phytochemistry of Rosa rugosa, Phytochemistry, 1996, 43, 535–549

  • [2] Bruun H.H., Rosa rugosa Thunb. ex Murray, J. Ecol., 2005, 93, 441–470

  • [3] Wenzig E.M., Widowitz U., Kunert O., Chrubasik S., Bucar F., Knauder E., et al., Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations, Phytomedicine, 2008, 15, 826–835

  • [4] Jung H.J., Nam J.H., Choi J., Lee K.T., Park H.J. 19α-hydroxyursane-type triterpenoids: antinociceptive anti-inflammatory principles of the roots of Rosa rugosa, Biol. Pharm. Bull., 2005, 28, 101–104

  • [5] Z. Naturforsch. C, 2006, 62, 32-38 -> Z. Naturforsch. C, 2007, 62, 32–38

  • [6] Razungles A., Oszmianski J., Sapis J.-C., Determination of carotenoids in fruits of Rosa sp. (Rosa canina and Rosa rugosa) and of chokeberry (Aronia melanocarpa), J. Food Sci., 1989, 54, 774–775

  • [7] Ochir S., Park B., Nishizawa M., Kanazawa T., Funaki M., Yamagishi T., Simultaneous determination of hydrolysable tannins in the petals of Rosa rugosa and allied plants, J. Nat. Med., 2010, 64, 383–387

  • [8] Ng T.B., He J.S., Niu M., Zhao L., Pi Z.F., Shao W., et al., A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers, J. Pharm. Pharmacol., 2004, 56, 537–545

  • [9] Atoui A.K., Mansouri A., Bosko G., Kefalas P., Tea and herbal infusions: their antioxidant activity and phenolic profile, Food Chem., 2005, 89, 27–36

  • [10] Paixão N., Perestrelo R., Marques J.C., Câmara J.S., Relationship between antioxidant capacity and total phenolic content of red, rose and white wines, Food Chem., 2007, 105, 204–214

  • [11] Cho E.J., Yokozawa T., Rhyu D.Y., Kim H.Y., Shibahara N., Park J.C., The inhibitory effects of 12 medicinal plants and their component compounds on lipid peroxidation, Am. J. Chin. Med., 2003, 31, 907–917

  • [12] Kamijo M., Kanazawa T., Funaki M., Nishizawa M., Yamagishi T., Effects of Rosa rugosa petals on intestinal bacteria, Biosci. Biotechnol. Biochem., 2008, 72, 773–777

  • [13] Lee Y.H., Jung M.G., Kang H.B., Choi K.C., Haam S., Jun W., et al., Effect of anti-histone acetyltransferase activity from Rosa rugosa Thunb. (Rosaceae) extracts on androgen receptor-mediated transcriptional regulation, J. Ethnopharmacol., 2008, 118, 412–417

  • [14] Yoshizawa Y., Kawaii S., Urashima M., Fukase T., Sato T., Tanaka R., et al., Antiproliferative effects of small fruit juices on several cancer cell lines, Anticancer Res., 2000, 20, 4285–4289

  • [15] European Pharmacopoeia, 3rd ed., Strasbourg: Council of Europe, cop., 1997

  • [16] Polish Pharmacopoeia (Farmakopea Polska VI), 6th ed., Polish Pharmaceutical Society, Warsaw, 2005

  • [17] European Pharmacopoeia, 6th ed., Strasbourg: Council of Europe, cop., 2007

  • [18] Singleton V.L., Rossi J.A. Jr., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 1965, 16, 144–158

  • [19] Lamaison J.L.C., Carret A., Teneurs en principaux flavonoids des fleurs de Crataegus monogyna Jacq et de Crataegus laevigata (Piret DC) en fonction de la vegetation, Plantes Médicinales et Phytothérapie, 1990, 25, 12–16

  • [20] Nichiforesco E., Coucou V., Sur le dosage des o-dihydrophenols de type acide cafeique presents dans les feuilles d’Artichaut (Cynara scolymus), Ann. Pharm. Franç., 1965, 23, 419–427

  • [21] Scott K.J., Detection and measurements of carotenoids by UV/VIS spectrophotometry, In: Wrolstad R.E. (Ed.), Current protocols in food analytical chemistry, First edition, John Wiley and Sons, Inc., New York, 2001

  • [22] Ellwart J., Dormer P., Effect of 5-fluoro-2′-deoxyuridine (FdUrd) on 5-bromo-2′-deoxyuridine (BrdUrd) incorporation into DNA measured with a monoclonal BrdUrd antibody and by the BrdUrd / hoechst quenching effect, Cytometry, 1985, 6, 513–520

  • [23] Skalicka-Woźniak K., Los R., Glowniak K., Malm A., Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and P. alsaticum, Chem. Biodiv., 2010, 7, 2748–2754

  • [24] Samaniego-Sánchez C., Inurreta-Salinas Y., Quesada-Granados J.J., Blanca-Herrera R., Villalón-Mir M., López-García de la Serrana H., et al., The influence of domestic culinary processes on the Trolox Equivalent Antioxidant Capacity of green tea infusions, J. Food Comp. Anal., 2011, 24, 79–86

  • [25] Hodgson J.M., Croft K.D., Tea flavonoids and cardiovascular health, Mol. Aspects Med., 2010, 31, 495–502

  • [26] Aherne S.A., O’Brien N.M., Dietary flavonols: chemistry, food content, and metabolism, Nutrition, 2002, 18, 75–81

  • [27] Frazier R.A., Deaville E.R., Green R.J., Stringano E., Willoughby I., Plant J., et al., Interactions of tea tannins and condensed tannins with proteins, J. Pharmaceut. Biomed., 2010, 51, 490–495

  • [28] Böhm V., Fröhlich K., Bitsch R., Rosehip — a „new“ source of lycopene?, Mol. Aspects Med., 2003, 24, 385–389

  • [29] Setiawan B., Sulaeman A., Giraud D.W., Driskell J.A., Carotenoid content of selected indonesian fruits, J. Food Comp. Anal., 2001, 14, 169–176

  • [30] Loizzo M.R., Said A., Tundis R., Hawas U.W., Rashed K., Menichini F., et al., Antioxidant and antiproliferative activity of diospyros lotus L. extract and isolated compounds, Plant Foods Hum. Nutr., 2009, 64, 264–270

  • [31] Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., et al., Antioxidant activity of plant extracts containing phenolic compounds, J. Agric. Food Chem., 1999, 47, 3954–3962

  • [32] Nowak R., Determination of ellagic acid in pseudofruits of some species of roses, Acta Pol. Pharm., 2006, 63, 289–292


Journal + Issues