Isolation of pathogenic bacteria from Oberea linearis (Coleptera: Cerambycidae)

Ali Bahar 1  and Zihni Demirbağ 1
  • 1 Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University, TR-61080, Trabzon, Turkey

Abstract

The bacterial flora of the Oberea linearis (Coleoptera: Cerambycidae) was investigated and 13 different bacteria were isolated from O. linearis larvae. Seven of these bacteria were performed and characterized at species level and the rest of them were characterized at genus level. In this study, we determined morphological and physiological characteristics of the bacterial isolates by conventional and routine techniques, biochemical properties and metabolic enzyme profiles by API20E and Phoenix 1000A panel test systems. Additionally, 16S rRNA gene sequence analysis was also performed to identify the isolates at the molecular level. The isolates were identified as Acinetobacter calcoaceticus (Ol1), Enterobacter aerogenes (Ol2), Pseudomonas sp. (Ol3), Flavobacterium sp. (Ol4), Microbacterium sp. (Ol5), Enterobacter agglomerans (Ol6), Xanthomonas sp. (Ol7), Pseudomonas syringae (Ol8), Pseudomonas sp. (Ol9), Xanthomonas sp. (Ol10), Enterobacter cancerogenus (Ol11), Xanthomonas maltophilia (Ol12), and Serratia marcescens (Ol13). This is the first record of bacterial isolates (Ol5, Ol8, Ol11, Ol12) from any insect. All these bacteria were tested against O. linearis larvae, and Serratia marcescens was found to cause the highest mortality (65%). On the other hand, we determined 90% mortality against this pest within four days by utilizing spore and crystal mixture of Bacillus thuringiensis isolated from Melolontha melolontha.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Alsina M. & Blanch A.R. 1994. A set of keys for biochemical identification of environmental Vibrio species. J. Appl. Bacteriol. 76: 79–85.

  • [2] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410. http://dx.doi.org/10.1006/jmbi.1990.9999

  • [3] Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. http://dx.doi.org/10.1093/nar/25.17.3389

  • [4] Anonymous. 1995. Zirai Mucadele Teknik Talimatlari, Cilt 3. Tarim ve Koyisleri Bakanligi, Ankara.

  • [5] Aptosoglou S.G., Sivropoulou A. & Koliais S.I. 1997. Plasmid patterns of Bacillus thuringiensis strains and isolates. Microbios 91: 203–214.

  • [6] Bucher G.E. 1967. Pathogens of tobacco and tomato hornworms. J. Invertebr. Pathol. 9: 82–89. http://dx.doi.org/10.1016/0022-2011(67)90047-X

  • [7] Case C.L. & Johnson T.R. 1992. Laboratory Experiments in Microbiology, 3rd Ed. Benjamin Cummings Publishing Company, Inc., California, 350 pp.

  • [8] Demir I., Sezen K. & Demirbag Z. 2002. The first study on bacterial flora and biological control agent of Anoplus roboris (Sufr., Coleoptera). J. Microbiol. 40: 104–108.

  • [9] Hurst G.D.D., Bandi C., Sacchi L., Cochrane A.G., Bertrand D., Karaca I. & Majerus M.E.N. 1999. Adonia variegata (Coleoptera: Coccinellidae) bears maternally inherited Flavobacteria that kill males only. Parasitology 118: 125–134. http://dx.doi.org/10.1017/S0031182098003655

  • [10] Jackson T.A., Boucias D.G. & Thaler J.O. 2001. Pathobiology of amber disease, caused by Serratia spp., in the New Zeland grass grub, Costelytra zealandica. J. Invertebr. Pathol. 78: 232–243. http://dx.doi.org/10.1006/jipa.2002.5078

  • [11] Jeyaprakash A., Hoy M.A. & Allsopp M.H. 2003. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J. Invertebr. Pathol. 84: 96–103. http://dx.doi.org/10.1016/j.jip.2003.08.007

  • [12] Krieg N.R. & Holt J.G. 1986. Gram-negative aerobic rods and cocci, pp. 140–218. In: Palleroni N.J. (ed.) Bergey’s Manual of Systematic Bacteriology, Vol. 1, Williams and Wilkins, Baltimore.

  • [13] Kuzina L.V., Peloquin J.J., Vacek D.C. & Miller T.A. 2001. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr. Microbiol. 42: 290–294.

  • [14] Lipa J.J. & Wiland E. 1972. Bacteria isolated from cutworms and their infectivity to Agrotis sp. Acta Microbiol. Polonica Ser. B 4: 127–140.

  • [15] Lynch R.E., Lewis L.C. & Brindley T.A. 1976. Bacteria associated with eggs and first-instar larvae of the European corn borer: identification and frequency of occurrence. J. Invertebr. Pathol. 27: 229–237. http://dx.doi.org/10.1016/0022-2011(76)90150-6

  • [16] Milenkovic S. & Mitrovic M. 2001. Hazelnut pests in Serbia. Acta Horticulturae 556: 403–406.

  • [17] Moar W.J., Pusztzai-Carey M. & Mack T.P. 1995. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis againts lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 88: 606–609.

  • [18] Osborn F., Berlioz L., Vitelli-Flores J., Monsalve W., Dorta B. & Lemoine V.R. 2002. Pathogenic effects of bacteria isolated from larvae of Hylesia metabus crammer (Lepidoptera: Saturniidae). J. Invertebr. Pathol. 80: 7–12. http://dx.doi.org/10.1016/S0022-2011(02)00037-X

  • [19] Poinar G.O. & Thomas G.M. 1978. Diagnostic Manual for the Identification of Insect Pathogens. Plenum Press, New York, 218 pp.

  • [20] Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

  • [21] Sandra W.W. & Douglas I.G. 2004. Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol. Control 29: 155–168. http://dx.doi.org/10.1016/S1049-9644(03)00139-7

  • [22] Sezen K. & Demirbag Z. 1999. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl. Entomol. Zool. 34: 85–89.

  • [23] Sezen K., Demir I., Kati H. & Demirbag Z. 2005. Investigations on bacteria as a potential biological control agent of summer chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J. Microbiol. 43: 463–468.

  • [24] Sezen K., Yaman M. & Demirbag Z. 2001. Insecticidal potential of Serratia marcescens Bn10. Biologia 56: 333–336.

  • [25] Sneath P.H.A., Mair N.S., Sharpe M.E. & Holt J.G. 1986. Regular, nonsporing Grampositive rods, pp. 1208–1260. In: Kandler O. & Weiss N. (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 2, Williams and Wilkins, Baltimore.

  • [26] Sramova H., Daniel M., Absolonova V., Dedicova D., Jedlickova Z., Lhotova H., Petras P. & Subertova V. 1992. Epidemiological role of arthropods detectable in health facilities. J. Hosp. Infect. 20: 281–292. http://dx.doi.org/10.1016/0195-6701(92)90006-8

  • [27] Thiery I. & Frachon E. 1997. Idendification, isolation, culture and preservation of enthomopathogenic bacteria, pp. 55–73. In: Lacey A.L. (ed.) Manual of Techniques in Insect Pathology, Academic Press, London.

  • [28] William G.W., Susan M.B., Dale A.P. & David J.L. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703.

OPEN ACCESS

Journal + Issues

Search