Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 12, 2010

Salt stress-induced expression of rice AOX1a is mediated through an accumulation of hydrogen peroxide

  • Hanqing Feng EMAIL logo , Yifeng Wang , Hongyu Li , Rongfang Wang , Kun Sun and Lingyun Jia
From the journal Biologia

Abstract

Treatment with 300 mM NaCl increased the capacity of the alternative respiratory pathway and induced the expression of AOX1a of the leaves of rice (Oryza sativa L.) seedlings. A significant increase in the content of hydrogen peroxide (H2O2) was observed in rice leaves treated with 300 mM NaCl. However, NaCl at 150 mM did not significantly affect the capacity of the alternative respiratory pathway, the content of H2O2, and the transcript level of AOX1a. Exogenous application of H2O2 enhanced the levels of the capacity of the alternative respiratory pathway and AOX1a expression. The accumulation of H2O2 in rice leaves in response to 300 mM NaCl was inhibited by the pretreatment with dimethylthiourea (DMTU, scavenger of H2O2). This treatment also suppressed the induction of AOX1a expression and the increase in the capacity of the alternative respiratory pathway under 300 mM NaCl stress. Moreover, the salt-stressed (300 mM NaCl) seedlings pretreated with 1 mM salicylhydroxamic acid (SHAM, a special inhibitor of alternative oxidase) had higher level of H2O2 production than the seedlings either subjected to 300 mM NaCl stress or SHAM treatment alone did. These observations suggest that the expression of AOX1a in response to higher salt stress is mediated through an accumulation of H2O2 and alternative oxidase could play a role in antioxidant protection under the condition of higher salt stress.

[1] Bartoli C.G., Gomez F., Gergoff G., Guiamét J.J. & Puntarulo S. 2005. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J. Exp. Bot. 56: 1269–1276. http://dx.doi.org/10.1093/jxb/eri11110.1093/jxb/eri111Search in Google Scholar PubMed

[2] Bingham I.J. & Farrar J.F. 1989. Activity and capacity of respiration pathways in barley roots deprived of inorganic nutrients. Plant Physiol. Biochem. 27: 847–854. Search in Google Scholar

[3] Brennan T. & Frenkel C. 1977. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 59: 411–416. http://dx.doi.org/10.1104/pp.59.3.41110.1104/pp.59.3.411Search in Google Scholar PubMed PubMed Central

[4] Brown G.C. & Borutaite V. 2001. Nitric oxide, mitochondria, and cell death. IUBMB Life. 52: 189–195. http://dx.doi.org/10.1080/1521654015284599310.1080/15216540152845993Search in Google Scholar PubMed

[5] Clifton R., Lister R., Parker K.L., Sappl P.G., Elhafez D., Millar A.H., Day D.A. & Whelan J. 2005. Stress-induced coexpression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol. Biol. 58: 193–212. http://dx.doi.org/10.1007/s11103-005-5514-710.1007/s11103-005-5514-7Search in Google Scholar PubMed

[6] Considine M.J., Holtzapffel R.C., Day D.A., Whelan J. & Millar A.H. 2002. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol. 129: 949–953. http://dx.doi.org/10.1104/pp.00415010.1104/pp.004150Search in Google Scholar PubMed PubMed Central

[7] Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D. & Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57: 779–795. http://dx.doi.org/10.1007/s00018005004110.1007/s000180050041Search in Google Scholar PubMed

[8] de Azevedo Neto A.D., Prisco J.T., Enéas-Filho J., Medeiros J.V. & Gomes-Filho E. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162: 1114–1122. http://dx.doi.org/10.1016/j.jplph.2005.01.00710.1016/j.jplph.2005.01.007Search in Google Scholar PubMed

[9] Ederli L., Morettini R., Borgogni A., Wasternack C., Miersch O., Reale L., Ferranti F., Tosti N. & Pasqualini S. 2006. Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol. 142: 595–608. http://dx.doi.org/10.1104/pp.106.08547210.1104/pp.106.085472Search in Google Scholar PubMed PubMed Central

[10] Elthon T.E., Nickels R.L. & McIntosh L. 1989. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 89: 1311–1317. http://dx.doi.org/10.1104/pp.89.4.131110.1104/pp.89.4.1311Search in Google Scholar PubMed PubMed Central

[11] Feng H., Li H., Li X., Duan J., Liang H., Zhi D. & Ma J. 2007. The flexible interrelation between AOX respiratory pathway and photosynthesis in rice leaves. Plant Physiol. Biochem. 45: 228–235. http://dx.doi.org/10.1016/j.plaphy.2007.01.00810.1016/j.plaphy.2007.01.008Search in Google Scholar PubMed

[12] Ferreira A.L., Arrabaça J.D., Vaz-Pinto V. & Lima-Costa M.E. 2008. Induction of alternative oxidase chain under salt stress conditions. Biol. Plantarum 52: 66–71. http://dx.doi.org/10.1007/s10535-008-0009-410.1007/s10535-008-0009-4Search in Google Scholar

[13] Flowers T.J. & Yeo A.R. 1981. Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol. 88: 363–373. http://dx.doi.org/10.1111/j.1469-8137.1981.tb01731.x10.1111/j.1469-8137.1981.tb01731.xSearch in Google Scholar

[14] Fung R.W.M., Wang C.Y., Smith D.L., Gross K.C. & Tian M.S. 2004. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Sci. 166: 711–719. http://dx.doi.org/10.1016/j.plantsci.2003.11.00910.1016/j.plantsci.2003.11.009Search in Google Scholar

[15] Furuhashi K., Hosakay Y. & Kabasawat T. 1989. Increases in cyanide-resistant respiration and ethanol fermentation in rice callus cells with increases in the supply of sucrose. Plant Cell Physiol. 30: 459–461. Search in Google Scholar

[16] González-Meler M.A., Giles L., Thomas R.B. & Siedow J.N. 2001. Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply. Plant Cell Environ. 24: 205–215. http://dx.doi.org/10.1111/j.1365-3040.2001.00674.x10.1111/j.1365-3040.2001.00674.xSearch in Google Scholar

[17] Han D., Antunes F., Canali R., Rettori D. & Cadenas E. 2003. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 278: 5557–5563. http://dx.doi.org/10.1074/jbc.M21026920010.1074/jbc.M210269200Search in Google Scholar PubMed

[18] Ho L.H., Giraud E., Uggalla V., Lister R., Clifton R., Glen A., Thirkettle-Watts D., Van Aken O. & Whelan J. 2008. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis. Plant Physiol. 147: 1858–1873. http://dx.doi.org/10.1104/pp.108.12138410.1104/pp.108.121384Search in Google Scholar PubMed PubMed Central

[19] Hong C.Y., Hsu Y.T., Tsai Y.C. & Kao C.H. 2007. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J. Exp. Bot. 58: 3273–3283. http://dx.doi.org/10.1093/jxb/erm17410.1093/jxb/erm174Search in Google Scholar PubMed

[20] Jiang M. & Zhang J. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53: 2401–2410. http://dx.doi.org/10.1093/jxb/erf09010.1093/jxb/erf090Search in Google Scholar PubMed

[21] Khanam M., Al-Yeasa M., Rahman M.S., Al-Mahbub A. & Gomosta A.R. 2007. Effects of different factors on the growth efficiency of rice seedlings. Bangladesh J. Bot. 36: 171–176. 10.3329/bjb.v36i2.1508Search in Google Scholar

[22] Lin J., Wang Y. & Wang G. 2006. Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J. Plant Physiol. 163: 731–739. http://dx.doi.org/10.1016/j.jplph.2005.06.01610.1016/j.jplph.2005.06.016Search in Google Scholar PubMed

[23] Maxwell D.P., Wang Y. & McIntosh L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cell. Proc. Natl. Acad. Sci. (USA) 96: 8271–8276. http://dx.doi.org/10.1073/pnas.96.14.827110.1073/pnas.96.14.8271Search in Google Scholar PubMed PubMed Central

[24] Millenaar F.F. & Lambers H. 2003. The alternative oxidase: in vivo regulation and function. Plant Biol. 5: 2–15. http://dx.doi.org/10.1055/s-2003-3797410.1055/s-2003-37974Search in Google Scholar

[25] Mizuno N., Sugie A., Kobayashi F. & Takumi S. 2008. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. J. Plant Physiol. 165: 462–467. http://dx.doi.org/10.1016/j.jplph.2007.04.00410.1016/j.jplph.2007.04.004Search in Google Scholar PubMed

[26] Møller I.A., Bérczi A., Van der Plas L.H.W. & Lambers H. 1988. Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. Physiol. Plant. 7: 642–649. http://dx.doi.org/10.1111/j.1399-3054.1988.tb09176.x10.1111/j.1399-3054.1988.tb09176.xSearch in Google Scholar

[27] Norman C., Howell K.A., Millar A.H., Whelan J.M. & Day D.A. 2004. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol. 134: 492–501 http://dx.doi.org/10.1104/pp.103.03103910.1104/pp.103.031039Search in Google Scholar PubMed PubMed Central

[28] Parani M., Rudrabhatla S., Myers R., Weirich H., Smith B., Leaman D.W. & Goldman S.L. 2004. Microarray analysis of nitric oxide responsive transcript in Arabidopsis. Plant Biotech. J. 2: 359–366. http://dx.doi.org/10.1111/j.1467-7652.2004.00085.x10.1111/j.1467-7652.2004.00085.xSearch in Google Scholar PubMed

[29] Prasad T.K., Anderson M.D., Martin B.A. & Steward C.R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74. http://dx.doi.org/10.1105/tpc.6.1.6510.1105/tpc.6.1.65Search in Google Scholar PubMed PubMed Central

[30] Ribas-Carbo M., Taylor N.L., Giles L., Busquets S., Finnegan P.M., Day D.A., Lambers H., Medrano H., Berry J.A. & Flexas J. 2005. Effects of water stress on respiration in soybean leaves. Plant Physiol. 139: 466–473. http://dx.doi.org/10.1104/pp.105.06556510.1104/pp.105.065565Search in Google Scholar PubMed PubMed Central

[31] Saika H., Ohtsu K., Hamanaka S. & Nakazono M. 2002. AOX1c, a novel rice gene for alternative oxidase, comparison with rice AOX1a and AOX1b. Genes Genet. Syst. 77: 31–38. http://dx.doi.org/10.1266/ggs.77.3110.1266/ggs.77.31Search in Google Scholar PubMed

[32] Simons B.H., Millenaar F.F., Mulder L., Van Loon L.C. & Lambers H. 1999. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv tomato. Plant Physiol. 120: 529–538. http://dx.doi.org/10.1104/pp.120.2.52910.1104/pp.120.2.529Search in Google Scholar PubMed PubMed Central

[33] Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 12: 27–58. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03863.x10.1111/j.1469-8137.1993.tb03863.xSearch in Google Scholar

[34] Szalai G., Páldi E. & Janda T. 2005. Effect of salt stress on the endogenous salicylic acid content in maize (Zea mays L.) plants. Acta Biol. Szeged. 49: 47–48. Search in Google Scholar

[35] Vanlerberghe G.C. & McIntosh L. 1992. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco. Plant Physiol. 100: 1846–1851. http://dx.doi.org/10.1104/pp.100.4.184610.1104/pp.100.4.1846Search in Google Scholar

[36] Wagner A.M. & Krab K. 1995. The alternative respiration pathway in plants: role and regulation. Physiol. Plant. 95: 318–325. http://dx.doi.org/10.1111/j.1399-3054.1995.tb00844.x10.1111/j.1399-3054.1995.tb00844.xSearch in Google Scholar

[37] Wagner A.M. 1995. A role for active oxygen speices as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Lett. 368: 339–342. http://dx.doi.org/10.1016/0014-5793(95)00688-610.1016/0014-5793(95)00688-6Search in Google Scholar

[38] Zapata P.J., Serrano M., Pretel M.T., Amorós A. & Botella M.á. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci. 167: 781–788. http://dx.doi.org/10.1016/j.plantsci.2004.05.01410.1016/j.plantsci.2004.05.014Search in Google Scholar

[39] Zeng L. & Shannon M.C. 2000. Salinity effects on seedling growth and yield components of rice. Crop Sci. 40: 996–1003. http://dx.doi.org/10.2135/cropsci2000.404996x10.2135/cropsci2000.404996xSearch in Google Scholar

[40] Zhang L. & Xing D. 2008. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol. 49: 1092–1111. http://dx.doi.org/10.1093/pcp/pcn08610.1093/pcp/pcn086Search in Google Scholar PubMed

Published Online: 2010-8-12
Published in Print: 2010-10-1

© 2010 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-010-0100-0/html
Scroll to top button