Analysis of movement in primary maize roots

Liyana Popova, Andrea Russino 2 , Antonio Ascrizzi,  and Barbara Mazzolai 1
  • 1 Center for Micro-Biorobotics@SSSA, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Italy
  • 2 The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale R. Piaggio 34, 56025, Pontedera, Italy


Studying plant root kinematics is important for understanding certain aspects of root growth and movement, which are strictly correlated in plants. However, there is little available data on autonomous movements in plant roots, such as nutations, and the data that are available are poorly described. We investigated the autonomous movements during growth in primary maize roots by estimating the main kinematic parameters of nutations (i.e., the period of duration and amplitude) and the growth rate. The estimations of nutation parameters were performed by developing dedicated methods, which are based on the analysis of root tip displacement and tip velocity. The data relative to the tip displacements were obtained using tip tracing software developed by our team specifically for this purpose. The results confirmed that the nutational phenomenon covers the continuous range of periods and amplitudes, with certain dominant period-amplitude types, which we clustered into three groups: i) amplitudes less than 0.1 mm and 4–16 min periods, ii) amplitudes less than 0.1 mm and 20–120 min periods, and iii) amplitudes greater than 0.1 mm and 24–120 min periods.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Baluška F., Mancuso S., Volkmann D. & Barlow P.W. 2009. The ‘root-brain’ hypothesis of Charles and Francis Darwin. Plant Sig. Behav. 4: 1121–1127.

  • [2] Brown A.H. 1993. Circumnutations:from Darwin to space flights. Plant. Physiol. 101: 345–348.

  • [3] Eapen D., Barroso M.L., Ponce G., Campos M.E. & Cassab G.I. 2005. Hydrotropism: root growth responses to water. Trends Plant Sci. 10: 44–50.

  • [4] Gilroy S., Monshausen G.B. & Swanson S.J. 2008. Chapter 5. Touch Sensing and Thigmotropism, pp. 91–122. In: Gilroy S. & Masson P.H. (eds), Plant Tropisms, Blackwell Publishing Ltd, Oxford, UK.

  • [5] Hayashi Y., Nishiyama H., Tanoi K., Ohya T., Nihey N., Tanioka K. & Nakanishi T.M. 2004. An alluminium influence on root circumnutation in dark revealed by a new super-HARP (highgain avalanche rushing amorphous photoconductor) camera. Plant. Cell Physiol. 45: 351–356.

  • [6] Hirota H. 1976. Rotation growth of root tips in Zea mays and Lolium multiflorum. J. Jap. Sci.Grassl. Set. 22: 156–160.

  • [7] Inoue N., Arase T., Hagiwara M., Amano T., Hayashi T. & Ikeda R. 1999. Ecological significance of root tip rotation for seedling establishment of Oryza sativa L. Ecol. Res. 14: 31–38.

  • [8] Ishikawa H. & Evans M.L. 1992. Induction of curvature in maize roots by calcium or by thigmostimulation. Role of the postmitotic isodiametric growth zone. Plant. Physiol. 100: 762–768.

  • [9] Migliaccio F., Fortunati A. & Tassone P. 2009. Arabidopsis root growth movements and their symmetry: Progress and problems arising from recent work. Plant Sig. Behav. 4: 183–190.

  • [10] Russino A., Ascrizzi A. & Mazzolai B. 2011. A novel imageanalysis tool for study of root tip movements. Proceedings of 7th International Symposium on Structure and Function of Roots. Novy Smokovec, Slovakia, pp. 148–149.

  • [11] Shabala S.N. & Newman I.A. 1997. Proton and calcium flux oscillations in the elongation region correlate with root nutation. Plant.Physiol. 100: 917–926.

  • [12] Shabala S. 2003. Physiological implications of ultradian oscillations in plant roots. Plant Soil 255: 217–226.

  • [13] Trewavas A. 2002. Mindless mastery. Nature 415: 841

  • [14] Trewavas A. 2005. Plant intelligence. Naturwissenschaften 92: 401–413

  • [15] Vollsnes A. V., Futsaether C.M. & Bengough A.G. 2010. Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocimetry. Soil Sci. 61: 926–939.

  • [16] Walter A., Feil R. & Schurr U. 2003. Expansion dynamics, metabolite composition and substance transfer of the primary root growth of Zea mays L. growth in different external nutrient availabilities. Plant. Cell. Environ. 26: 1451–1466.

  • [17] Yazdanbakhsh N. & Fisahn J. 2010. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann. Bot. 105: 783–791.


Journal + Issues