Philopatry analysis of the great reed warbler (Acrocephalus arundinaceus) based on ringing data in Europe

Norbert Mátrai 1 , József Gyurácz 2 , Mihály Lenczl 3 , Gyula Hoffmann 4 , Gábor Bakonyi 1  and Róbert Mátics
  • 1 Department of Zoology and Animal Ecology, Szent István University, 2100, Gödöllő, Páter K. Str. 1., Hungary
  • 2 Department of Zoology, University of West Hungary, POB 170., 9701, Szombathely, Hungary
  • 3 Institute of Isotopes CO., LTD, Konkoly Thege Miklós Rd. 29-33., Budapest, Hungary
  • 4 Department of Genetics and Molecular Biology, University of Pécs, 7643, Pécs, Hungary
  • 5 Department of Pathophysiology and Gerontology, University of Pécs, H-7643, Szigeti Rd. 12., 7643, Pécs, Hungary
  • 6 Hungarian Nature Research Society (HuNaReS), H-8448, Ajka, Vadvirág u. 5., Hungary

Abstract

Ringing databases of the EURING Data Bank and the Hungarian Bird Ringing Centre were analysed in order to investigate the philopatry of the great reed warbler (Acrocephalus arundinaceus) in three European regions. The aim of the study was to find out if there are continent-scale geographic trends in philopatry with respect to the age of the birds. Three clusters were assigned according to their geographic positions: (i) southern part of Europe (Region 1: between 36°–43° latitudes), (ii) middle part of Europe (Region 2: between 43°–49° latitudes) and (iii) northern part of Europe, (Region 3: between 49°–56° latitudes). No significant differences were found between the natal and breeding philopatry in any Regions, except Region 3. The birds ringed as adults in Region 3 were less faithful to their breeding site than those of the other two regions. Natal philopatry of juveniles did not differ between Region 1 and Region 2, but both of them differed in this respect from Region 3. A method for choosing appropriate breeding periods in philopatry studies is also proposed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Bensch S. & Hasselquist D. 1991. Territory infidelity in the polygynous great reed warblers Acrocephalus arundinaceus: The effect of variation in territory attractiveness. J. Anim. Ecol. 60: 857–871. DOI: 10.2307/5418 http://dx.doi.org/10.2307/5418

  • [2] Bensch S., Hasselquist D., Nielsen B. & Hansson B. 1998. Higher fitness for philopatric than for immigrant males in a semiisolated population of Great Reed Warblers. Evolution 52(3): 877–889. DOI: 10.2307/2411282 http://dx.doi.org/10.2307/2411282

  • [3] Bosschieter L., Goedhart P.W., Foppen R.P.B. & Vos C.C. 2010. Modelling small scale dispersal of the Great reed Warbler Acrocephalus arundinaceus in a fragmented landscape. Ardea 98(3): 383–394. DOI: 10.5253/078.098.0312 http://dx.doi.org/10.5253/078.098.0312

  • [4] Cramp S. & Duncan J.B. (eds) 1992. Handbook of the birds of Europe, the Middle East and North Africa.The birds of the Western Paleartic. Vol. VI. Oxford University Press, New York, 736 pp. ISBN: 0198575092

  • [5] Fischer S. & Haupt H. 1994. Ansiedlerstreuung, Alter und Zugwege ostdeutscher Drosselrohrsänger (Acrocephalus arundinaceus) — eine Ringfundanalyse. Vogelwarte 37: 183–189.

  • [6] Forstmeier W. & Leisler B. 2004. Repertoire size, sexual selection, and offspring viability in the great reed warbler: changing patterns in space and time. Behav. Ecol. 15(4): 555–563. DOI: 10.1093/beheco/arh051 http://dx.doi.org/10.1093/beheco/arh051

  • [7] Greenwood P.J. 1980. Mating system, philopatry and dispersal in birds and mammals. Anim. Behav. 28(4): 1140–1162. DOI: 10.1016/S0003-3472(80)80103-5 http://dx.doi.org/10.1016/S0003-3472(80)80103-5

  • [8] Hansson B., Bensch S. & Hasselquist D. 2003a. A new approach to study dispersal: immigration of novel alleles reveals femalebiased dispersal in great reed warblers. Molec. Ecol. 12(3): 631–637. DOI: 10.1046/j.1365-294X.2003.01772.x http://dx.doi.org/10.1046/j.1365-294X.2003.01772.x

  • [9] Hansson B., Bensch S. & Hasselquist D. 2003b. Heritability of dispersal in the great reed warbler. Ecol. Lett. 6(4): 290–294. DOI: 10.1046/j.1461-0248.2003.00436.x http://dx.doi.org/10.1046/j.1461-0248.2003.00436.x

  • [10] Hansson B., Bensch S. & Hasselquist D. 2004. Lifetime fitness of short- and long distance dispersing Great reed Warblers. Evolution 58(11): 2546–2557. DOI: 10.1111/j.0014-3820.2004.tb00883.x

  • [11] Hansson B., Bensch S., Hasselquist D. & Åkesson M. 2001. Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc. Roy. Soc. B 268(1473): 1287–1291. DOI: 10.1098/rspb.2001.1640 http://dx.doi.org/10.1098/rspb.2001.1640

  • [12] Hansson B., Bensch S., Hasselquist D. & Nielsen B. 2002. Restricted dispersal in a long-distance migrant bird with patchy distribution, the great reed warbler. Oecologia 130(4): 536–542. DOI: 10.1007/s00442-001-0831-2 http://dx.doi.org/10.1007/s00442-001-0831-2

  • [13] Hansson B., Hasselquist D., Lillandt B.G., Wennerberg L. & Schantz T. von. 2000. Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Molec. Ecol. 9(10): 1529–1538. DOI: 10.1046/j.1365-294x.2000.01028.x http://dx.doi.org/10.1046/j.1365-294x.2000.01028.x

  • [14] Hasselquist D. 1998. Polygyny in the great reed warbler: a long term study of factors contributing to male fitness. Ecology 79(7): 2376–2390. DOI: 10.1890/0012-9658(1998)079[2376:PIGRWA]2.0.CO;2 http://dx.doi.org/10.1890/0012-9658(1998)079[2376:PIGRWA]2.0.CO;2

  • [15] Hasselquist D., Bensch S. & Schantz T. von 1995. Low frequency of extra-pair paternity in the polygynous great reed warbler. Behav. Ecol. 6(1): 27–38. DOI: 10.1093/beheco/6.1.27 http://dx.doi.org/10.1093/beheco/6.1.27

  • [16] Hasselquist D., Bensch S. & Schantz T. von 1996. Correlation between male song repertoire, extra-pair paternity and offspring survival in the Great reed Warbler. Nature 381(6579): 229–232. DOI: 10.1038/381229a0 http://dx.doi.org/10.1038/381229a0

  • [17] Moskát C., Hansson B., Barabás L., Bártol I. & Karcza Z. 2008. Common cuckoo Cuculus canorus parasitism, antiparasite defence and gene flow in closely located populations of Great reed Warblers Acrocephalus arundinaceus. J. Avian Biol. 39(6): 663–671. DOI: 10.1111/j.1600-048X.2008.04359.x http://dx.doi.org/10.1111/j.1600-048X.2008.04359.x

  • [18] Paradis E., Baillie S.R., Sutherlans W.J. & Gregory R.D 1998. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67(4): 518–536. DOI: 10.1046/j.1365-2656.1998.00215.x http://dx.doi.org/10.1046/j.1365-2656.1998.00215.x

  • [19] Procházka P. & Reif J. 2000. Analysis of ringing recoveries of Great reed Warblers (Acrocephalus arundinaceus) ringed or recovered in the Czech Republic and Slovakia. Sylvia 36(2): 91–105.

  • [20] Ronce O., Olivieri I., Clobert J. & Danchin E. 2001. Perspectives on the study of dispersal evolution, Perspectives for the study of dispersal evolution. Chapter 24, pp. 341–357. In: Clobert J., Danchin E., Dhondt A.A. & Nichols J.D. (eds), Dispersal, Oxford University Press, Oxford, 480 pp. ISBN-10: 0198506597, ISBN-13: 9780198506591

  • [21] Slatkin M. 1985. Rare alleles as indicators of gene flow. Evolution 39(1): 53–65. http://dx.doi.org/10.2307/2408516

  • [22] Vadász C., Német á., Karcza Z., Loránt M., Biró C. & Csörgő T. 2008. Study on breeding site fidelity of Acrocephalus warblers in Central Hungary. Acta Zool. Acad. Sci. Hung.54(Suppl. 1): 167–175.

  • [23] Węgrzyn E., Leniowski K. & Osiejuk T.S. 2010. Whistle duration and consistency reflect philopatry and harem size in great reed warblers. Anim. Behav. 79(6): 1363–1372. DOI: 10.1016/j.anbehav.2010.03.012 http://dx.doi.org/10.1016/j.anbehav.2010.03.012

OPEN ACCESS

Journal + Issues

Search