Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter January 28, 2014

Expression pattern of PsAPY1 during apical hook development in pea

  • Trivima Sharma EMAIL logo , Eugene Morita and Shunnosuke Abe
From the journal Biologia

Abstract

Apyrase (ATP diphosphohydrolase, EC 3.6.1.5) catalyzes hydrolysis of nucleoside tri- and di-phosphates to nucleoside monophosphates and orthophosphates. In the present study, the spatio-temporal expression of an apyrase gene (PsAPY1) in pea (Pisum sativum L. var. Alaska), was investigated during early stages of apical hook development using nonradioactive mRNA in-situ hybridization. During the formation of apical hook; at 45 hours after sowing (HAS), expression of PsAPY1 was obvious in epidermis and vascular bundle. By 60 HAS, the apical hook was completely formed. At this stage, transcript accumulation became higher than at the previous stage and expression was also visible in the cortex tissues of the developing hook. However, at 78 HAS, the curvature of the hook was reduced and hook was in the process of opening. At this time, expression of PsAPY1 was visible in all the above-mentioned tissues although the level of expression was slightly lower than at the previous stage (60 HAS). Apical hook formation provides a unique mechanism of protection for delicate shoot meristem in dicot plants. Its establishment is orchestrated by differential elongation rates of cells within the structure. The expression pattern of a gene provides essential information concerning the likely appearance and localization of its encoded protein and this helps to understand the mechanism of development of plant cells and tissues. Higher expression of PsAPY1 during the process of hook development indicates its essential role in the process of formation and maintenance of hook curvature and thus aids in protection of delicate shoot meristem.

[1] Arumugam T.U., Davies E., Morita E.H. & Abe S. 2007. Sequence, expression and tissue localization of a gene encoding a Makorin RING zinc-finger protein in germinating rice (Oryza sativa L. ssp. Japonica) seeds. Plant Physiol. Biochem. 45: 767–780. http://dx.doi.org/10.1016/j.plaphy.2007.07.00610.1016/j.plaphy.2007.07.006Search in Google Scholar

[2] Chiu T.Y., Christiansen K., Moreno I., Lao J., Loqué D., Orellana A., Heazlewood J.L., Clark G. & Roux S.J. 2012. At-APY1 and AtAPY2 function as Golgi localized nucleoside diphosphatases in Arabidopsis thaliana. Plant Cell Physiol. 53: 1913–1925. http://dx.doi.org/10.1093/pcp/pcs13110.1093/pcp/pcs131Search in Google Scholar

[3] Clark G., Torre J., Finlayson S., Guan X., Handley C., Lee J., Kays J.E., Chen Z. & Roux S.J. 2011. Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol. 152: 1073–1083. http://dx.doi.org/10.1104/pp.109.14763710.1104/pp.109.147637Search in Google Scholar

[4] Cohn J.R., Uhm T., Ramu S., Nam Y.W., Kim D.J., Penmetsa R.V., Wood T.C., Denny R.L., Young N.D., Cook D.R. & Gray S. 2001. Differential regulation of a family of apyrase genes from Medicago truncatula. Plant Physiol. 125: 2104–2119. http://dx.doi.org/10.1104/pp.125.4.210410.1104/pp.125.4.2104Search in Google Scholar

[5] Day R.B., McAlvin C.B., Loh J.T., Denny R.L., Wood T.C., Young N.D. & Stacey G. 2000. Differential expression of two soybean apyrases, one of which is an early nodulin. Mol. Plant Microbe Interact. 13: 1053–1070. http://dx.doi.org/10.1094/MPMI.2000.13.10.105310.1094/MPMI.2000.13.10.1053Search in Google Scholar

[6] Dunkley T.P.J., Watson R., Griffin J.L., Dupree P. & Lilley K.S. 2004. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell Proteomics 3: 1128–1134. http://dx.doi.org/10.1074/mcp.T400009-MCP20010.1074/mcp.T400009-MCP200Search in Google Scholar

[7] Ecker J.R. 1995. The ethylene signal transduction pathway in plants. Science 268: 667–675. http://dx.doi.org/10.1126/science.773237510.1126/science.7732375Search in Google Scholar

[8] Ecker J.R. & Theologis A. 1994. Ethylene: a unique plant signalling molecule, pp. 485–522. In: Somerville C.R. & Meyerowitz E. (eds), Arabidopsis, Cold Spring Harbor Laboratory Press, New York. Search in Google Scholar

[9] Garbers C., DeLong A., Deruere J., Bernasconi P. & Soll D. 1996. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15: 2115–2124. 10.1002/j.1460-2075.1996.tb00565.xSearch in Google Scholar

[10] Geigenberger P., Riew D. & Fernie A.R. 2009. The central regulation of plant physiology by adenylates. Trends Plant Sci.15: 98–105. http://dx.doi.org/10.1016/j.tplants.2009.11.00410.1016/j.tplants.2009.11.004Search in Google Scholar

[11] Hsieh H.L., Song C.J. & Roux S.J. 2000. Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. Biochim. Biophys. Acta 1494: 248–255. http://dx.doi.org/10.1016/S0167-4781(00)00245-110.1016/S0167-4781(00)00245-1Search in Google Scholar

[12] Kalckar H.M. 1944. Adenylpyrophosphatase and myokinase. J. Biol. Chem. 153: 355–367. 10.1016/S0021-9258(18)71978-9Search in Google Scholar

[13] Kettlun A.M., Uribe L., Calvo V., Silva S., Rivera J., Mancilla M., Valenzuela M.A. & Traversocori A. 1982. Properties of 2 apyrases from Solanum tuberosum. Phytochemistry 21: 551–558. http://dx.doi.org/10.1016/0031-9422(82)83139-710.1016/0031-9422(82)83139-7Search in Google Scholar

[14] Komoszynski M. & Wojtczak A. 1996. Apyrases (ATP diphoshpydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochim. Biophys. Acta 310: 233–241. http://dx.doi.org/10.1016/0167-4889(95)00135-210.1016/0167-4889(95)00135-2Search in Google Scholar

[15] Lehman A., Black R. & Ecker J.R. 1996. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85: 183–194. http://dx.doi.org/10.1016/S0092-8674(00)81095-810.1016/S0092-8674(00)81095-8Search in Google Scholar

[16] Liu X., Wu J., Clark G., Lundy S., Lim M., Arnold D., Chan J., Tang W., Muday G.K., Gardner G. & Roux S.J. 2012. Role for apyrases in polar auxin transport in Arabidopsis. Plant Physiol. 160: 1985–1995. http://dx.doi.org/10.1104/pp.112.20288710.1104/pp.112.202887Search in Google Scholar

[17] Mathur J. 2004. Cell shape development in plants. Trends Plant Sci. 9: 583–590. http://dx.doi.org/10.1016/j.tplants.2004.10.00610.1016/j.tplants.2004.10.006Search in Google Scholar

[18] Matsumoto H., Yamaya T. & Tanigawa M. 1984. Activation of ATPase activity in the chromatin fraction of pea nuclei by calcium and calmodulin. Plant Cell Physiol. 25: 191–195. Search in Google Scholar

[19] Molnar J. & Lorand L. 1961. Studies on apyrases. Arch. Biochem. Biophys. 93: 353–363. http://dx.doi.org/10.1016/0003-9861(61)90278-810.1016/0003-9861(61)90278-8Search in Google Scholar

[20] Moustafa M.F.M., Yoneda M., Abe S. & Davies E. 2003. Changes in isotypes and enzyme activity of apyrase during germination of dark-grown pea (Pisum sativum) seedlings. Physiol. Plant. 119: 146–154. http://dx.doi.org/10.1034/j.1399-3054.2003.00152.x10.1034/j.1399-3054.2003.00152.xSearch in Google Scholar

[21] Parsons H.T., Christiansen K., Knierim B., Carroll A., Ito J., Batth T.S., Smith-Moritz A.M., Morrison S., McInerney P., Hadi M.Z., Auer M., Mukhopadhyay A., Petzold C.J., Scheller H.V., Loqué D. & Heazlewood J.L. 2012. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol. 159: 12–26. http://dx.doi.org/10.1104/pp.111.19315110.1104/pp.111.193151Search in Google Scholar

[22] Plesner L. 1995. Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158: 141–214. http://dx.doi.org/10.1016/S0074-7696(08)62487-010.1016/S0074-7696(08)62487-0Search in Google Scholar

[23] Raz V. & Ecker J.R. 1999. Regulation of differential growth in the apical hook of Arabidopsis. Development 126: 3661–3668. 10.1242/dev.126.16.3661Search in Google Scholar

[24] Raz V. & Koornneef M. 2001. Cell division activity during apical hook development. Plant Physiol. 125: 219–226. http://dx.doi.org/10.1104/pp.125.1.21910.1104/pp.125.1.219Search in Google Scholar

[25] Schiller M., Massalski C., Kurth T. & Steinebrunner I. 2012. The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC Plant Biol. 12: 123. http://dx.doi.org/10.1186/1471-2229-12-12310.1186/1471-2229-12-123Search in Google Scholar

[26] Schwark A. & Schierle J. 1992. Interaction of ethylene and auxin in the regulation of hook growth I. The roles of auxin in different growing regions of the hypocotyl hook of Phaeolus vulgaris. J. Plant Physiol. 140: 562–570. http://dx.doi.org/10.1016/S0176-1617(11)80790-X10.1016/S0176-1617(11)80790-XSearch in Google Scholar

[27] Sharma T., Sahi V.P., Morita E.H. & Abe S. 2013. Spatiotemporal expression of PsAPY1 during germination, differentiation, and organogenesis in pea (Pisum sativum L.Var. Alaska). Acta Physiol. Plant. 35: 1269–1279. http://dx.doi.org/10.1007/s11738-012-1166-910.1007/s11738-012-1166-9Search in Google Scholar

[28] Shibata K., Morita Y., Abe S., Stankovic B. & Davies E. 1999. Apyrase from pea stems: isolation, purification, characterization and identification of a NTPase from the cytoskeleton fraction of pea stem tissue. Plant Physiol. Biochem. 37: 881–888. http://dx.doi.org/10.1016/S0981-9428(99)00102-310.1016/S0981-9428(99)00102-3Search in Google Scholar

[29] Shibata K., Abe S., Yoneda M. & Davies E. 2002. Sub-cellular distribution and isotypes of a 49-kDa apyrase from Pisum sativum. Plant Physiol. Biochem. 40: 407–415. http://dx.doi.org/10.1016/S0981-9428(02)01389-X10.1016/S0981-9428(02)01389-XSearch in Google Scholar

[30] Silk W.K. & Erickson R.O. 1978. Kinematics of hypocotyl curvature. Am. J. Bot. 65: 310–319. http://dx.doi.org/10.2307/244227110.1002/j.1537-2197.1978.tb06072.xSearch in Google Scholar

[31] Steinebrunner I., Wu J., Sun Y., Corbett A. & Roux S.J. 2003. Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol. 131: 638–1647. http://dx.doi.org/10.1104/pp.102.01430810.1104/pp.102.014308Search in Google Scholar PubMed PubMed Central

[32] Thomas C., Sun Y., Naus K., Lloyd A. & Roux S.J. 1999. Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol. 119: 543–552. http://dx.doi.org/10.1104/pp.119.2.54310.1104/pp.119.2.543Search in Google Scholar PubMed PubMed Central

[33] Tong C.G., Dauwalder M., Clawson G.A., Hatem C.L. & Roux S.J. 1993. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins. Plant Physiol. 101: 1005–1011. http://dx.doi.org/10.1104/pp.101.3.100510.1104/pp.101.3.1005Search in Google Scholar

[34] Wasteneys G.O. & Galway M.E. 2003. Remodelling the cytoskeleton for growth and form: an overview with some new views. Ann. Rev. Plant Biol. 54: 691–722. http://dx.doi.org/10.1146/annurev.arplant.54.031902.13481810.1146/annurev.arplant.54.031902.134818Search in Google Scholar

[35] Willige B.C., Tanaka E.O., Zourelidou M. & Schwechheimer C. 2012. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development 139: 4020–4028. http://dx.doi.org/10.1242/dev.08124010.1242/dev.081240Search in Google Scholar

[36] Wu J., Steinebrunner I., Sun Y., Buttereld T., Torres J., Arnold D., Gonzalez A., Jacob F., Reichler S. & Roux S.J. 2007. Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant Physiol. 144: 961–975. http://dx.doi.org/10.1104/pp.107.09756810.1104/pp.107.097568Search in Google Scholar

[37] Yoneda M., Davies E., Morita E.H. & Abe S. 2009. Immunohistochemical localization of apyrase during initial differentiation and germination of pea seeds. Planta 231: 47–56. http://dx.doi.org/10.1007/s00425-009-1025-010.1007/s00425-009-1025-0Search in Google Scholar

[38] Zancani M., Casolo V., Vianello A. & Macrı F. 2001. Involvement of apyrase in the regulation of the adenylate pool by adenylate kinase in plant mitochondria. Plant Sci. 161: 927–933. http://dx.doi.org/10.1016/S0168-9452(01)00487-310.1016/S0168-9452(01)00487-3Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-3-1

© 2013 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-013-0325-9/html
Scroll to top button