A murrel cysteine protease, cathepsin L: bioinformatics characterization, gene expression and proteolytic activity

Venkatesh Kumaresan 1 , Prasanth Bhatt 1 , Rajesh Palanisamy 1 , Annie Gnanam 2 , Mukesh Pasupuleti 3 ,  and Jesu Arockiaraj 1
  • 1 Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
  • 2 Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
  • 3 Lab PCN 206, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India

Abstract

Cathepsin L, a lysosomal endopeptidase, is a member of the peptidase C1 family (papain-like family) of cysteine proteinases that cleave peptide bonds of lysosomal proteins. In this study, we report a cathepsin L sequence identified from the constructed cDNA library of striped murrel Channa striatus (designated as CsCath L) using genome sequencing FLXTM technology. The full-length CsCath L contains three eukaryotic thiol protease domains at positions 134-145, 278-288 and 299-318. Phylogenetic analysis revealed that the CsCath L was clustered together with other cathepsin L from teleosts. The three-dimensional structure of CsCath L modelled by the I-Tasser program was compared with structures deposited in the Protein Data Bank to find out the structural similarity of CsCath L with experimentally identified structures. The results showed that the CsCath L exhibits maximum structural identity with pro-cathepsin L from human. The RNA fold structure of CsCath L was predicted along with its minimum free energy (−471.93 kcal/mol). The highest CsCath L gene expression was observed in liver, which was also significantly higher (P < 0.05) than that detected in other tissues taken for analysis. In order to investigate the mRNA transcription profile of CsCath L during infection, C. striatus were injected with fungus (Aphanomyces invadans) and bacteria (Aeromonas hydrophila) and its expression was up-regulated in liver at various time points. Similar to gene expression studies, the highest CsCath L enzyme activity was also observed in liver and its activity was up-regulated by fungal and bacterial infections.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ahn S., Sung J., Kim N., Lee A., Jeon S., Lee J., Kim J., Chung J. & Lee H. 2010. Molecular cloning, expression and characterization of cathepsin L from mud loach (Misgurnus mizolepis). Appl. Biochem. Biotechnol. 162: 1858–1871. http://dx.doi.org/10.1007/s12010-010-8964-6

  • [2] Aranishi F., Ogata H., Hara K., Osatomi K. & Ishihara T. 1997. Purification and characterization of cathepsin L from hepatopancreas of carp Cyprinus carpio. Comp. Biochem. Physiol. B Biochem. Mol. 118: 531–537. http://dx.doi.org/10.1016/S0305-0491(97)00111-9

  • [3] Arockiaraj J., Avin F.A., Vanaraja P., Easwvaran S., Singh A., Othman R.Y. & Bhassu S. 2012. Immune role of MrNFκBI-α, an IκB family member characterized in prawn M. rosenbergii. Fish Shellfish Immunol. 33: 619–625. http://dx.doi.org/10.1016/j.fsi.2012.06.015

  • [4] Arockiaraj J., Gnanam A., Muthukrishnan D., Pasupuleti M., Milton J. & Singh A. 2013. An upstream initiator caspase 10 of snakehead murrel Channa striatus, containing DED, p20 and p10 subunits: molecular cloning, gene expression and proteolytic activity. Fish Shellfish Immunol. 34: 505–513. http://dx.doi.org/10.1016/j.fsi.2012.11.040

  • [5] Arockiaraj J., Vanaraja P., Easwvaran S., Singh A., Alinejaid T., Othman R. & Bhassu S. 2011. Gene profiling and characterization of arginine kinase-1 (MrAK-1) from freshwater giant prawn (Macrobrachium rosenbergii). Fish Shellfish Immunol. 31: 81–89. http://dx.doi.org/10.1016/j.fsi.2011.04.004

  • [6] Balaji K., Schaschke N., Machleidt W., Catalfamo M. & Henkart P.A. 2002. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196: 493–503. http://dx.doi.org/10.1084/jem.20011836

  • [7] Caster G. & Cole J.R. 1990. Diagnostic Procedure in Veterinary Bacteriology and Mycology, 5th Edn. Academic Press.

  • [8] Chen L., Zhang M. & Sun L. 2011. Identification and expressional analysis of two cathepsins from half-smooth tongue sole (Cynoglossus semilaevis). Fish Shell?sh Immunol. 31: 1270–1277. http://dx.doi.org/10.1016/j.fsi.2011.09.012

  • [9] Chevreux B., Pfisterer T., Drescher B., Driesel A., Müller W., Wetter T. & Suhai S. 2004. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14: 1147–1159. http://dx.doi.org/10.1101/gr.1917404

  • [10] Conus S. & Simon H. 2010. Cathepsins and their involvement in immune responses. Swiss Med. Wkly 140: w13042.

  • [11] Coulombe R., Grochulski P., Sivaraman J., Menard R., Mort J. & Cygler M. 1996. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 15: 5492–5503.

  • [12] Dhanaraj M., Haniffa M., Ramakrishnan C. & Singh S.V. 2008. Microbial flora from the Epizootic Ulcerative Syndrome (EUS) infected murrel Channa striatus (Bloch, 1797) in Tirunelveli region. Turk. J. Vet. Anim. Sci. 32: 221–224.

  • [13] Dong W., Xiang L. & Shao J. 2007. Cloning and characterisation of two natural killer enhancing factor genes (NKEF-A and NKEF-B) in pufferfish, Tetraodon nigroviridis. Fish Shellfish Immunol. 22: 1–15. http://dx.doi.org/10.1016/j.fsi.2006.03.007

  • [14] Felbor U., Kessler B., Mothes W., Goebel H., Ploegh H., Bronson R. & Olsen B. 2002. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. USA 99: 7883–7888. http://dx.doi.org/10.1073/pnas.112632299

  • [15] Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41: 95–98.

  • [16] Heu M., Kim H., Cho D., Godber J. & Pyeun J. 1997. Purification and characterization of cathepsin L-like enzyme from the muscle of anchovy, Engraulis japonica. Comp. Biochem. Physiol. B Biochem. Mol. 118: 523–529. http://dx.doi.org/10.1016/S0305-0491(97)00181-8

  • [17] Karrer K., Peiffer S. & Ditomas M. 1993. Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 90: 3063–3067. http://dx.doi.org/10.1073/pnas.90.7.3063

  • [18] Kim J., Jeong J., Park H., Kim E., Kim H., Chae Y., Kim D. & Park C. 2011. Molecular identification and expression analysis of cathepsins O and S from rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol. 31: 578–587. http://dx.doi.org/10.1016/j.fsi.2011.07.007

  • [19] Lee J., Chen H. & Jiang S. 1993. Purification and characterization of proteinases identified as cathepsins L and L-like (58 kDa) proteinase from mackerel (Scomber australasicus). Biosci. Biotechnol. Biochem. 57: 1470–1476. http://dx.doi.org/10.1271/bbb.57.1470

  • [20] Livak K. & Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 T−ΔΔC method. Methods 25: 402–408. http://dx.doi.org/10.1006/meth.2001.1262

  • [21] Li W., Jin X., He L., Jiang H., Gong Y., Xie Y. & Wang Q. 2010. Molecular cloning, characterization, expression and activity analysis of cathepsin L in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 29: 1010–1018. http://dx.doi.org/10.1016/j.fsi.2010.08.007

  • [22] Li W.W., He L., Jin X.K., Jiang H., Chen L.L., Wang Y. & Wang Q. 2011. Molecular cloning, characterization and expression analysis of cathepsin A gene in Chinese mitten crab, Eriocheir sinensis. Peptides 32: 518–525. http://dx.doi.org/10.1016/j.peptides.2010.08.027

  • [23] Ma J., Zhang D., Jiang J., Cui S., Pu H. & Jiang S. 2010. Molecular characterization and expression analysis of cathepsin L1 cysteine protease from pearl oyster Pinctada fucata. Fish Shellfish Immunol. 29: 501–507. http://dx.doi.org/10.1016/j.fsi.2010.05.006

  • [24] Matsumoto I., Watanabe H., Abe K., Arai S. & Emori Y. 1995. A putative digestive cysteine proteinase from Drosophila melanogaster is predominantly expressed in the embryonic and larval midgut. Eur. J. Biochem. 227: 582–587. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20428.x

  • [25] Menard R. & Storer A. 1992. Oxyanion hole interactions in serine and cysteine proteases. Biol. Chem. 373: 393–400.

  • [26] Press C.M. & Evensen O. 1999. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9: 309–318. http://dx.doi.org/10.1006/fsim.1998.0181

  • [27] Rawlings N., Morton F. & Barrett A. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34: D270–D272. http://dx.doi.org/10.1093/nar/gkj089

  • [28] Reinheckel T., Deussing J., Roth W. & Peters C. 2001. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol. Chem. 382: 735–741.

  • [29] Roy A., Kucukural A. & Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protocols 5: 725–738. http://dx.doi.org/10.1038/nprot.2010.5

  • [30] Stephens A., Rojo L., Araujo-Bernal S., Garcia-Carreno F. & Muhlia-Almazan A. 2012. Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissuesspecific expression and biological activity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 161: 32–40. http://dx.doi.org/10.1016/j.cbpb.2011.09.004

  • [31] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr121

  • [32] Tingaud-Sequeira A. & Cerda J. 2007. Phylogenetic relationships and gene expression pattern of three different cathepsin L (Ctsl) isoforms in zebrafish: Ctsla is the putative yolk processing enzyme. Gene 386: 98–106. http://dx.doi.org/10.1016/j.gene.2006.08.018

  • [33] Trent M., Stead C., Tran A. & Hankins J. 2006. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 12: 205–223. http://dx.doi.org/10.1179/096805106X118825

  • [34] Turk V., Turk B. & Turk D. 2001. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20: 4629–4633. http://dx.doi.org/10.1093/emboj/20.17.4629

  • [35] Uinuk-Ool T., Takezaki N., Kuroda N., Figueroa F., Sato A., Samonte I., Mayer W. & Klein J. 2003. Phylogeny of antigenprocessing enzymes: cathepsins of a cephalochordate, an agnathan and a bony fish. Scand. J. Immunol. 58: 436–448. http://dx.doi.org/10.1046/j.1365-3083.2003.01322.x

  • [36] Vernet T., Berti P.J., De Montigny C., Musil R., Tessier D.C., Menard R., Magny M.C., Storer A.C. & Thomas D.Y. 1995. Processing of the papain precursor. The ionization of a conserved amino acid motif within the pro region participates in the regulation of intramolecular processing. J. Biol. Chem. 270: 10838–10846. http://dx.doi.org/10.1074/jbc.270.18.10838

  • [37] Visessanguan W., Benjakul S. & An H. 2003. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134: 477–487. http://dx.doi.org/10.1016/S1096-4959(02)00293-2

  • [38] Yamashita M. & Konagaya S. 1990. Purification and characterization of cathepsin L from the white muscle of chum salmon, Oncorhynchus keta. Comp. Biochem. Physiol. B 96: 247–252.

  • [39] Yeh H. & Klesius P. 2009. Channel catfish, Ictalurus punctatus, cysteine proteinases: cloning, characterisation and expression of cathepsin H and L. Fish Shellfish Immunol. 26: 332–338. http://dx.doi.org/10.1016/j.fsi.2008.11.010

  • [40] Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40. http://dx.doi.org/10.1186/1471-2105-9-40

OPEN ACCESS

Journal + Issues

Search