Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure

Gurpreet Kaur 1 , Harminder Pal Singh 1 , Daizy Rani Batish 2  and Ravinder Kumar Kohli 2
  • 1 Department of Environment Studies, Panjab University, Chandigarh 160014, India
  • 2 Department of Botany, Panjab University, Chandigarh 160014, India

Abstract

Lead (Pb), a widespread contaminant in terrestrial landscape, is highly detrimental to plant and animal life. Specifically, Pb-contaminated soils cause a sharp decrease in crop productivity, thereby posing a serious risk to agriculture. A study was planned to investigate the toxic effect of Pb2+ (0, 16, 40 and 80 mg L−1) in the seedlings of maize (Zea mays), in terms of induced physiological and biochemical changes at initial hours of treatment (0-8 h). Increased accumulation of malondialdehyde (MDA) served as an indicator of cellular peroxidation. At 80 mg L−1 Pb2+, MDA content enhanced over the control by 175% after 2 h of exposure and increased further to 461% greater over the control after 8 h of exposure. Elevated superoxide ion (O−·2 ) and H2O2 contents suggested oxidative damage to the plants. The level of H2O2 increased over control by 70%, 80%, 135% and 182% at 2, 4, 6, and 8 h after exposure to 16 mg L−1 Pb2+, respectively. In situ histochemical localization confirmed the level of lipid peroxides, increased accumulation of O−·2 and loss of membrane integrity upon Pb2+ treatment. Pb2+ -induced oxidative stress triggered significant changes in the activities of antioxidant enzymes. A concentration-dependent increase was observed in the activities of the superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) in response to Pb2+, whereas catalases (CAT) was not able to provide protection against oxidative stress. These observations imply that Pb2+ -induced oxidative stress during initial period (0-8 h) of exposure involved ROS accumulation and upregulation of scavenging enzymes except CAT as a defense against Pb2+ -toxicity.

  • Alscher R.G., Erturk N. & Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331-1341.

  • Beauchamp C. & Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-286.

  • Boveris A., Cadenas E. & Chance B. 1980. Low level chemiluminescence of the lipoxygenase reaction. Photobiochem. Photobiophys. 1: 175-182.

  • Cakmak I. & Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98: 1222-1227.

  • Choudhury S. & Panda S.K. 2005. Toxic effects oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth under chromium and lead phytotoxicity. Water Air Soil Pollut. 167: 73-90.

  • Devi S.R. & Prasad M.N.V. 1998. Copper toxicity in Ceratophyllum demersum L (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants Plant Sci. 138: 157-165.

  • Dixit V., Vivek P. & Shyam R. 2001. Differential antioxidative responses to cadmium in root and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot. 52: 1101-1109.

  • Dogan M., Saygideger S.D. & Colak U. 2009. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull. Environ. Contam. Toxicol. 83: 249-254.

  • Egley G.H., Paul R.N., Vaughn K.C. & Duke S.O. 1983. Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta157: 224-232.

  • Ekmekçi Y., Tanyolac D. & Ayhan B. 2009. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol. Plant. 31: 319-330.

  • Feieraband J. & Engel S. 1986. Photoinactivation of catalase in vitro and in leaves. Arch. Biochem. Biophys. 251: 567-576.

  • Foyer C.H., Souriau N., Perret S., Lelandais M., Kunert K.J., Pruvost C. & Jouanin L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047-1057.

  • Foyer C.H. & Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposal role in ascorbic acid metabolism. Planta 133: 21-25.

  • Fridovich I. 1978. The biology of oxygen radicals. Science 201: 875-880.

  • Gawȩda M. 2007. Changes in the contents of some carbohydrates in vegetables cumulating Lead. Pol. J. Environ. Stud. 16: 57-62.

  • Godbold D.Y. & Ketner C. 1991. Lead influences root growth and mineral nutrition of Picea abies seedlings. J. Plant Physiol. 139: 95-99.

  • Gratäo P.L., Polle A, Lea P.J. & Azevedo R.A. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481-494.

  • Gupta D.K., Nicoloso F.T., Schetinger M.R.C., Rossato L.V., Pereira L.B., Castro G.Y., Srivastava S. & Tripathi R.D. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater. 172: 479-484.

  • Heath R.L. & Packer L. 1968. Photoperoxidation in isolated chloroplast I Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198

  • Kaur G., Singh H.P., Batish D.R. & Kohli R.K. 2012a. Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J. Environ. Biol. 33: 265-269.

  • Kaur G., Singh H.P., Batish D.R. & Kohli R.K. 2012b. Lead (Pb)- induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 250: 53-62

  • Keser G. & Saygideger S. 2010. Effects of Pb on the activities of antioxidant enzymes in water cress, Nasturtium officinale R Br. Biol. Trace. Elem. Res. 137: 235-243.

  • Kopyra M. & Gwozdz E.A. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem. 41: 1011-1017.

  • Lamb D.T., Ming H., Megharaj M. & Naidu R. 2010. Phytotoxicity and accumulation of lead in Australian native vegetation. Arch. Environ. Contam. Toxicol. 58: 613-621.

  • Lee K.C., Cunningham B.A., Paulsen G.M., Liang G.H. & Moore R.B. 1976. Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol. Plant. 36: 4-6.

  • Liu D., Zou J., Meng Q., Zou J. & Jiang W. 2009. Uptake and accumulation and oxidative stress in garlic (Allium sativum L) under lead phytotoxicity. Ecotoxicology 18: 134-143.

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein estimation with Folin-phenol reagent. J. Biol. Chem. 193: 265-278.

  • Małecka A., Piechalak A. & Tomaszewska B. 2009. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol. Plant. 31: 1053-1063.

  • Misra H.R. & Fridovich I. 1972. The univalent reduction of oxygen by reduced flavins and quinines. J. Biol. Chem. 247: 188-192.

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.

  • Mustafa M.G. 1990. Biochemical basis of ozone toxicity. Free Rad. Biol. Medic. 9: 245-265.

  • Nakano Y. & Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.

  • Piotrowska A., Bajguzn A., Godlewska-Zyłkiewicz B. & Zambrzycka E. 2010. Changes in growth biochemical components and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch. Environ. Contam. Toxicol. 58: 594-604.

  • Pompella A., Maellaro E., Casini A.F. & Comporti M. 1987. Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am. J. Pathol. 129: 295-301.

  • Qureshi M.I., Israr M., AbdinM.Z. & Iqbal M. 2005. Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ. Exp. Bot. 53: 185-193.

  • Reddy A.M., Kumar S.G., Jyothsnakumari G., Thimmanaik S. & Sudhakar C. 2005. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bangalgram (Cicer arietinum L.). Chemosphere 60: 97-104.

  • Ruley A.T., Sharma N.C. & Sahi S.V. 2004. Antioxidant defense in a lead accumulating plant, Sesbania drummmondi. Plant Physiol. Biochem. 2: 899-906.

  • Sandalio L.M., Dalurzo H.C., Gómez M., Romero-Puertas M.C. & del Rio L.A. 2001. Cadmium induces changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115-2126.

  • Sengar R.S., Gautam M., Sengar R.S., Garg S.K., Sengar K. & Chaudhary R. 2008. Lead stress effects on physiobiochemical activities of higher plants. Rev. Environ. Contam. Toxic. 196: 73-93.

  • Sobrino A.S., Miranda M.G., Alvarez C.& Quiroz A. 2010. Bioaccumulation and toxicity of lead (Pb) in Lemna gibba L. (duckweed). J. Environ Sci. Health 45: 107-110.

  • Stone J.R. & Yang S. 2006. Hydrogen peroxide: a signaling messenger. Antioxid. Redox. Signal. 8: 243-270.

  • Singh H.P., Batish D.R., Kaur G., Arora K. & Kohli R.K. 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ. Exp. Bot. 63: 158-167.

  • Singh R.P., Tripathi R.D., Sinha S.K., Maheswari R. & Srivastava H.S. 1997. Response of higher plants to lead contaminated environment. Chemosphere 32: 2467-2493.

  • Velikova V., Yordanov I. & Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants. Plant Sci. 151: 59-66.

  • Verma S. & Dubey R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164: 645-655.

  • Wierzbicka M. & Obidzinska J. 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Sci. 137: 155-171.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.


Journal + Issues

Search