Biological targeting with nanoparticles: state of the art

Diana Kozlova 1  and Matthias Epple 1
  • 1 Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
Diana Kozlova and Matthias Epple

Abstract

Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed.

  • 1.

    Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012;41:2885–911.

    • Crossref
  • 2.

    Stark WJ. Nanoparticles in biological systems. Angew Chem 2011;123:1276–93.

    • Crossref
  • 3.

    Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med 2010;363:2434–43.

    • Crossref
  • 4.

    Ferrari M. Frontiers in cancer nanomedicine: Directing mass transport through biological barriers. Trends Biotechnol 2010;28:181–8.

  • 5.

    Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine – challenge and perspectives. Angew Chem Int Ed 2009;48:872–97.

    • Crossref
  • 6.

    Kreuter J. Nanoparticles – a historical perspective. Int J Pharm 2007;331:1–10.

    • Crossref
  • 7.

    Lammers, T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Contr Rel 2012;161:175–87.

    • Crossref
  • 8.

    Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Contr Rel 2010;148:135–46.

    • Crossref
  • 9.

    Orive G, Gascon AR, Hernandez RM, Dominnguez-Gil A, Pedraz JL. Techniques: New approaches to the delivery of biopharmaceuticals. Trends Pharmacol Sci 2004;25:382–7.

    • Crossref
    • PubMed
  • 10.

    Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–57.

  • 11.

    Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature Mat 2009;8:15–23.

    • Crossref
  • 12.

    Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater 2011;7:4029–36.

    • Crossref
    • PubMed
  • 13.

    Nangia S, Sureshkumar R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 2012;28:17666–71.

    • Crossref
    • PubMed
  • 14.

    Lvov YM, Pattekari P, Zhang X, Torchilin V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 2011;27:1212–7.

    • Crossref
    • PubMed
  • 15.

    Khan DR. The use of nanocarriers for drug delivery in cancer therapy. J Cancer Sci Ther 2010;2:58–62.

    • Crossref
  • 16.

    Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012;14:282–95.

    • Crossref
    • PubMed
  • 17.

    Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem Int Ed 2008;47: 1382–95.

    • Crossref
  • 18.

    Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, et al. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J Immunol 2013;12:6221–9.

    • Crossref
  • 19.

    Homberger M, Simon U. On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 2010;368:1405–53.

    • Crossref
  • 20.

    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed 2010;49:3280–94.

    • Crossref
  • 21.

    Huang X, Neretina S, El-Sayed MA. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv Mater 2009;21:4880–910.

    • Crossref
    • PubMed
  • 22.

    Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 2008;37:2028–45.

    • Crossref
  • 23.

    Sperling RA, Rivera P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008;37:1896–1908.

    • Crossref
  • 24.

    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008;41:1721–30.

    • Crossref
  • 25.

    Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41:1578–86.

    • Crossref
  • 26.

    Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008;130:10643–7.

    • Crossref
  • 27.

    Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 2008;391:943–50.

    • Crossref
  • 28.

    Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009;61:467–77.

    • Crossref
  • 29.

    Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 2009;42:224002.

    • Crossref
  • 30.

    Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 2003;36:R167–81.

    • Crossref
  • 31.

    Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 2007;52:1653–61.

    • Crossref
    • PubMed
  • 32.

    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–24.

    • Crossref
  • 33.

    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761–9.

    • Crossref
  • 34.

    Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012;63:185–98.

    • Crossref
    • PubMed
  • 35.

    Balasubramanian SK, Liming Yang L, Yung LY, Ong CN, Ong WY, Yu LE. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010;31:9023–30.

    • Crossref
    • PubMed
  • 36.

    Mohanraj VJ, Chen Y. Nanoparticles – a review. Trop J Pharm Res 2006;5:561–73.

  • 37.

    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001;53:283–318.

  • 38.

    Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1–9.

    • Crossref
  • 39.

    Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, et al. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 2010;20:512–8.

  • 40.

    Grainger DW, Castner DG. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Adv Mater 2008;20:867–77.

    • Crossref
  • 41.

    Hahn A, Fuhlrott J, Loos A, Barcikowski S. Cytotoxicity and ion release of alloy nanoparticles. J Nanopart Res 2012;14:686.

    • Crossref
  • 42.

    He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010;31:3657–66.

    • Crossref
    • PubMed
  • 43.

    Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006;3:311–24.

    • Crossref
  • 44.

    Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 2013;11:1–12.

    • Crossref
  • 45.

    Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nano 2013;8:137–43.

  • 46.

    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013;135:1438–44.

    • Crossref
  • 47.

    Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech 2012;7:779–86.

    • Crossref
  • 48.

    Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 2012;6:8962–9.

    • Crossref
    • PubMed
  • 49.

    Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004;20:6800–7.

    • Crossref
    • PubMed
  • 50.

    Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomed 2011;6:715–28.

    • Crossref
  • 51.

    Kavitha K, BhalaMurugan GL. A review on PEG-ylationin anti-cancer drug delivery systems. Int J Pharm Biomed Sci 2013;4:296–304.

  • 52.

    Sengupta S, Kulkarni A. Design principles for clinical efficacy of cancer nanomedicine: A look into the basics. ACS Nano 2013;7:2878–82.

    • Crossref
    • PubMed
  • 53.

    Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004;25:3029–40.

    • Crossref
  • 54.

    Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2010;2:23–30.

    • Crossref
  • 55.

    Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 1980;288:602–4.

    • Crossref
  • 56.

    Arruebo M, Valladares M, Gonzalez-Fernandez A. Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009;2009:1–24.

    • Crossref
  • 57.

    Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacology 2012;2012:571394.

    • Crossref
  • 58.

    Blanco MD, Teijon C, Olmo RM, Teijon JM. Targeted nanoparticles for cancer therapy. In Recent advances in novel drug carrier systems, 2012:242–78.

    • Crossref
  • 59.

    Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC. Nanoparticles for targeted and temporally controlled drug delivery. In: Svenson S, Prud’homme RK, editors. Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. US: Springer. Available at: http://www.springer.com/engineering/book/978-1-4614-2304-1.

  • 60.

    Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008;8:1063–70.

  • 61.

    Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. Transferrin receptors and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012;1820:291–317.

    • Crossref
    • PubMed
  • 62.

    Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 2004;56:491–509.

    • Crossref
    • PubMed
  • 63.

    Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 2011;83: 727–34.

    • Crossref
  • 64.

    Aravind A, Yoshida Y, Maekawa T, Kumar DS. Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy. Drug Deliv and Transl Res 2012;2:418–36.

    • Crossref
    • PubMed
  • 65.

    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065–70.

    • Crossref
    • PubMed
  • 66.

    Huang YF, Lin YW, Lin ZH, Chang HC. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 2009;11:775–83.

    • Crossref
  • 67.

    Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo PNAS 2006;103:6315–20.

    • Crossref
  • 68.

    Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Bongard JE, Medintz IL. Peptides for specific intracellular delivery and targeting of nanoparticles: Implications for developing nanoparticle-mediated drug delivery. Therapeutic Delivery 2010;13:411–33.

    • Crossref
  • 69.

    Danhier F, Vroman B, Lecouturier N, Crokart C, Pourcelle V, Freichels H, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Contr Rel 2009;140:166–73.

    • Crossref
  • 70.

    Han HD, Mangala LS, Lee JW, Shahzad MMK, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 2010;16:3910–22.

    • Crossref
    • PubMed
  • 71.

    Porta F, Lamers GE, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, et al. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthcare Mater 2013;2:281–6.

    • Crossref
  • 72.

    Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 2011;32: 8548–54.

    • Crossref
    • PubMed
  • 73.

    Hayashi K, Moriya M, Sakamoto W, Yogo T. Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 2009;21:1318–25.

    • Crossref
  • 74.

    Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2:3–44.

    • Crossref
    • PubMed
  • 75.

    Gupta A, Gupta RK, Gupta GS. Targeting cells for drug and gene delivery: Emerging applications of mannans and mannan binding lectins. J Sci Ind Res 2009;68:465–83.

  • 76.

    Zhu XL, Du YZ, Yu RS, Liu P, Shi D, Chen Y, et al. Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate. Int J Mol Sci 2013;14:15755–66.

    • Crossref
  • 77.

    Ma MY, Chen H, Chen Y, Zhang K, Wang X, Cui X, et al. Hyaluronic acid-conjugated mesoporous silica nanoparticles: Excellent colloidal dispersity in physiological fluids and targeting efficacy. J Mater Chem 2012;22:5615–21.

    • Crossref
  • 78.

    Thanh NKT, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010;5:213–30.

    • Crossref
  • 79.

    De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater 2008;20:4225–41.

    • Crossref
  • 80.

    Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem 2001;40:4128–58.

    • Crossref
  • 81.

    Shiver-Lake LC, Donner B, Edelstein R, Breslin K, Bhatia SK, Ligler FS. Antibody immobilization using heterobifunctional crosslinkers. Biosens Bioelectron 1997;12:1101–6.

    • Crossref
  • 82.

    Dev Das R, Maji S, Das S, RoyChaudhuri C. Optimization of covalent antibody immobilization on macroporous silicon solid supports. Appl Surf Sci 2010;256:5867–75.

    • Crossref
  • 83.

    Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen S, et al. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J Phys Chem 2006;110: 5779–89.

    • Crossref
  • 84.

    Yang P, Zhang A, Sun H, Liu F, Jiang Q, Cheng X. Highly luminescent quantum dots functionalized and their conjugation with IgG. J Colloid Interface Sci 2010;345:222–7.

    • Crossref
  • 85.

    Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Contr Rel 2012;161:164–74.

    • Crossref
  • 86.

    Hu L, Mao Z, Gao C. Colloidal particles for cellular uptake and delivery. J Mater Chem 2009;19:3108–15.

    • Crossref
  • 87.

    Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37–44.

    • Crossref
  • 88.

    Thurn KT, Brown EMB, Wu A, Vogt S, Lai B, Maser J, et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2007;2:430–41.

    • Crossref
    • PubMed
  • 89.

    Fernando LP, Kandel PK, Yu J, McNeill J, Ackroyd PC, Christensen KA. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 2010;11:2675–82.

    • Crossref
  • 90.

    Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 2008;8:1135–43.

    • PubMed
  • 91.

    Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf AM, Epple M. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater 2013;9:7527–35.

    • Crossref
    • PubMed
  • 92.

    Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev 2012;41:2718–39.

    • Crossref
    • PubMed
  • 93.

    Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011;6:176–85.

    • Crossref
  • 94.

    Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 2011;7:347–54.

    • Crossref
    • PubMed
  • 95.

    Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour. Toxicol Appl Pharmacol 2012;258:151–65.

    • Crossref
  • 96.

    Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Contr Rel 2011;153:198–205.

    • Crossref
  • 97.

    Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950–62.

    • Crossref
  • 98.

    Anajwala CC, Jani GK, Swamy SMV. Current trends of nanotechnology for cancer therapy. Intern J Pharm Sci Nanotechnol 2010;3:1043–56.

    • Crossref
  • 99.

    Barakat NS, Bin Taleb DA, Al Salehi AS. Target nanoparticles: An appealing drug delivery platform. J Nanomedic Nanotechnol 2012;S4:1–9.

    • Crossref
  • 100.

    Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2008;2:449–56.

    • Crossref
    • PubMed
  • 101.

    Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res 2004;64:7668–72.

    • Crossref
  • 102.

    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery. ASC Nano 2008;2:889–96.

    • Crossref
  • 103.

    Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf AM, Epple M. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem 2012;22:396–404.

    • Crossref
  • 104.

    Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials 2011;32:3094–105.

    • Crossref
    • PubMed
  • 105.

    Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, et al. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011;32:9525–35.

    • Crossref
  • 106.

    Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Contr Rel 2007;121:156–67.

    • Crossref
  • 107.

    Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Contr Rel 2007;118:38–53.

    • Crossref
  • 108.

    Hu K, Shi Y, Jiang W, Han J, Huang S, Jiag X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson′s disease. Int J Pharm 2011;415:273–83.

    • Crossref
  • 109.

    Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010;31:5246–57.

    • Crossref
  • 110.

    Tian X-H, Wei F, Wang T-X, Wang P, Lin X-N, Wang J, et al. In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain. Int J Nanomed 2012;7:1031–41.

  • 111.

    Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011;32:7127–38.

    • Crossref
  • 112.

    Quek C-H, Leong KW. Near-infrared fluorescent nanoprobes for in vivo optical imaging. Nanomaterials 2012;2:92–112.

    • Crossref
  • 113.

    Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007;18: 17–25.

    • Crossref
  • 114.

    Gibbs SL. Near infrared fluorescence for image-guided surgery. Quant Imaging Med Surg 2012;2:177–87.

  • 115.

    Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad MS, et al. In vivo biodistribution and clearance studies using multimodal ormosil nanoparticles. ACS Nano 2010;23:699–708.

    • Crossref
  • 116.

    Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mater Chem B 2013;1:2324–32.

    • Crossref
  • 117.

    Hou Y, Liu Y, Chen Z, Gu N, Wang J. Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging. J Nanobiotechnol 2010;8:1–14.

    • Crossref
  • 118.

    Doherty GJ, McMahon HT. Mechanisms of endocytosis. Ann Rev Biochem 2009;78:857–902.

    • Crossref
Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search