Twenty-fold acceleration of 3D projection reconstruction MPI

Justin J. Konkle 2 , Patrick W. Goodwill 1 , Emine Ulku Saritas 1 , Bo Zheng 1 , Kuan Lu 1 , and Steven M. Conolly 1
  • 1 Department of Bioengineering and EECS, University of California, Berkeley, Berkeley, CA, USA
  • 2 Department of Bioengineering, University of California, Berkeley, 340 Hearst Memorial Mining Building, Berkeley, CA 94720-1762, USA
Justin J. Konkle, Patrick W. Goodwill, Emine Ulku Saritas, Bo Zheng, Kuan Lu and Steven M. Conolly

Abstract

We experimentally demonstrate a 20-fold improvement in acquisition time in projection reconstruction (PR) magnetic particle imaging (MPI) relative to the state-of-the-art PR MPI imaging results. We achieve this acceleration in our imaging system by introducing an additional Helmholtz electromagnet pair, which creates a slow shift (focus) field. Because of magnetostimulation limits in humans, we show that scan time with three-dimensional (3D) PR MPI is theoretically within the same order of magnitude as 3D MPI with a field free point; however, PR MPI has an order of magnitude signal-to-noise ratio gain.

  • [1]

    Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 2010; 31: 340–346.

    • Crossref
  • [2]

    Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging 2007; 26: 235–249.

    • Crossref
  • [3]

    Bulte JWM, Walczak P, Gleich B, et al. MPI cell tracking: what can we learn from MRI? Imaging 2011; 7965: 79650Z–79650Z-4.

    • Crossref
  • [4]

    Chandarana H, Godoy MCB, Vlahos I, et al. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms – initial observations. Radiology 2008; 249: 692–700.

    • Crossref
  • [5]

    Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys 2011; 38: 5200–5207.

    • Crossref
    • PubMed
  • [6]

    Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys 2012; 111: 7B318–7B3185.

    • Crossref
  • [7]

    Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011; 38: 1619.

    • Crossref
    • PubMed
  • [8]

    Fleischmann D, Boas FE. Computed tomography – old ideas and new technology. Eur Radiol 2011; 21: 510–517.

    • Crossref
    • PubMed
  • [9]

    Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214–1217.

    • Crossref
  • [10]

    Goldman LW. Principles of CT and CT technology. J Nucl Med Technol 2007; 35: 115–28.

    • Crossref
  • [11]

    Goodwill PW, Conolly SM. The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 2010; 29: 1851–1859.

    • Crossref
  • [12]

    Goodwill PW, Conolly SM. Multidimensional x-space magnetic particle imaging. IEEE Trans Med Imaging 2011; 30: 1581–1590.

    • Crossref
  • [13]

    Goodwill PW, Conolly SM. Experimental demonstration of x-space magnetic particle imaging. In: Proceedings of SPIE, vol. 7965, 2011: 79650U–79650U-6.

  • [14]

    Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection x-space magnetic particle imaging. IEEE Trans Med Imag 2012; 31: 1076–1085.

    • Crossref
  • [15]

    Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum 2012; 83: 033708.

    • Crossref
    • PubMed
  • [16]

    Goodwill PW, Tamrazian A, Croft LR, et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Appl Phys Lett 2011; 98: 262502.

    • Crossref
  • [17]

    Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol 2002; 20: S34–S39.

    • Crossref
  • [18]

    International Commission on Non-Ionizing Radiation Protection (ICNIRP). Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 2004; 87: 197–216.

    • Crossref
  • [19]

    Jorgensen SM, Demirkaya O, Ritman EL. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J Physiol 1998; 275: H1103–H1114.

    • Crossref
  • [20]

    Knopp T, Biederer S, Sattel TF, Erbe M, Buzug TM. Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process. IEEE Trans Med Imaging 2011; 30: 1284–1292.

    • Crossref
  • [21]

    Knopp T, Erbe M, Biederer S, Sattel TF, Buzug TM. Efficient generation of a magnetic field-free line. Med Phys 2010; 37: 3538.

    • Crossref
  • [22]

    Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. Generation of a static magnetic field-free line using two Maxwell coil pairs. Appl Phys Lett 2010; 97: 092505.

    • Crossref
  • [23]

    Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Probl 2011; 27: 095004.

    • Crossref
  • [24]

    Konkle J, Goodwill P, Carrasco-Zevallos O, Conolly S. Experimental 3D X-space magnetic particle imaging using projection reconstruction. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. Lubeck, Germany: Springer Proceedings in Physics 2012: 243–247.

    • Crossref
  • [25]

    Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging 2013; 32: 338–347.

    • Crossref
  • [26]

    Konkle J, Goodwill P, Conolly S. Development of a field free line magnet for projection MPI. In: Pelc NJ, Dawant BM, Summers RM, et al., editors. Proc. SPIE 7965, medical imaging 2011: biomedical applications in molecular, structural, and functional imaging, vol. 7965, 2011: 79650X–79650X-7.

  • [27]

    Krauss B, Schmidt B, Flohr T. Dual source CT. In: Johnson T, Fink C, SchÖnberg SO, Reiser MF, editors. Dual energy CT in Clinical Practice. Berlin Heidelberg: Springer 2011: 11–20.

    • Crossref
  • [28]

    Lu K, Goodwill P, Saritas E, Zheng B, Conolly S. Linearity and shift-invariance for quantitative magnetic particle imaging. IEEE Trans Med Imaging 2013; DOI: 10.1109/TMI.2013.2257177.

    • Crossref
  • [29]

    Lu K, Goodwill P, Zheng B, Conolly S. The impact of filtering direct-feedthrough on the x-space theory of magnetic particle imaging. In: SPIE proceedings, vol. 7965, 2011: 79652I–79652I-7.

    • Crossref
  • [30]

    Macovski A. Medical imaging systems, 1st ed. Kailath T, editor. Englewood Cliffs, NJ: Prentice Hall 1983.

  • [31]

    Nishimura DG. Principles of magnetic resonance imaging. Stanford, CA: Stanford University 2010.

  • [32]

    Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 2009; 9: 4.

    • Crossref
  • [33]

    Riederer SJ, Pelc NJ, Chesler DA. The noise power spectrum in computed X-ray tomography. Phys Med Biol 1978; 23: 446–454.

    • Crossref
  • [34]

    Saritas EU, Goodwill PW, Croft LR, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2012; 229: 116–126.

    • Crossref
  • [35]

    Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging 2013; DOI: 10.1109/TMI.2013.2260764.

    • Crossref
  • [36]

    Sattel TF, Knopp T, Biederer S. Single-sided device for magnetic particle imaging. J Phys D Appl Phys 2009; 42: 022001.

    • Crossref
  • [37]

    Schmale I, Rahmer J, Gleich B, et al. First phantom and in vivo MPI images with an extended field of view. Imaging 2011; 7965: 796510–796510-6.

    • Crossref
  • [38]

    Schmitz SA, Albrecht T, Wolf KJ. MR angiography with superparamagnetic iron oxide: feasibility study. Radiology 1999; 213: 603–607.

    • Crossref
  • [39]

    Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 2007; 52: 6363–6374.

    • Crossref
  • [40]

    Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys 2008; 41: 105009.

    • Crossref
  • [41]

    Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009; 54: L1–L10.

    • Crossref
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search