Parametrization of an in-silico circulatory simulation by clinical datasets – towards prediction of ventricular function following assist device implantation

Ajay Moza 1 , Jonas Gesenhues 2 , Rüdiger Autschbach 1 , Dirk Abel 2 , Rolf Rossaint 3 , Thomas Schmitz-Rode 4 ,  and Andreas Goetzenich 1
  • 1 Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Germany
  • 2 Institute of Automatic Control, RWTH Aachen University, Aachen, Germany
  • 3 Department of Anaesthesiology, University Hospital RWTH Aachen, Germany
  • 4 Institute of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
Ajay Moza, Jonas Gesenhues, Rüdiger Autschbach, Dirk Abel, Rolf Rossaint, Thomas Schmitz-Rode and Andreas Goetzenich

Abstract

Background:

Left ventricular assist device (LVAD) therapy has revolutionized the way end stage heart failure is treated today. Analysis of LVAD interaction with the whole cardiovascular system and its biological feedback loops is often conducted by means of computer models. Generating real time pressure volume loops (PV-loops) in patients, not using conductance catheters but routine diagnostics to feed an in-silico model could help to predict postoperative complications.

Methods:

Routinely obtained hemodynamic measurements to evaluate myocardial function prior to LVAD implantation like pressure readings in the aorta, the left atrium and the left ventricle and simultaneous three-dimensional (3D) echocardiography recordings were assessed to parametrize a reduced computational model of the cardiovascular system. An automatic parameter identification procedure has been developed.

Results:

The results constitute a patient-individual computational simulation model. An exemplary in-silico study focusing on the effect of different ventricular assist device (VAD) speeds has been conducted. Results allow for estimation of the resulting hemodynamic parameters and changes of the PV-loops.

Conclusion:

The model improves understanding and prediction of the interaction between pump and ventricles. Future modifications in exporting and merging routinely assessed real time hemodynamic patient data are necessary to investigate various clinical and pathological conditions of LVAD recipients.

  • [1]

    Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 2013; 96: 857–863; discussion 863–4.

    • Crossref
    • PubMed
    • Export Citation
  • [2]

    Baan J, van der Velde ET, Steendijk P. Ventricular pressure-volume relations in vivo. Eur Heart J 1992; 13(Suppl E): 2–6.

    • Crossref
    • PubMed
    • Export Citation
  • [3]

    Brunberg A, Heinke S, Spillner J, Autschbach R, Abel D, Leonhardt S. Modeling and simulation of the cardiovascular system: a review of applications, methods, and potentials. Biomed Tech (Berl) 2009; 54: 233–244.

    • Crossref
    • PubMed
    • Export Citation
  • [4]

    Buccheri S, Costanzo L, Tamburino C, Monte I. Reference values for real time three-dimensional echocardiography-derived left ventricular volumes and ejection fraction: review and meta-analysis of currently available studies. Echocardiography 2015; 32: 1841–1850.

    • Crossref
    • PubMed
    • Export Citation
  • [5]

    Chung DC, Niranjan SC, Clark JW, et al. A dynamic model of ventricular interaction and pericardial influence. Am J Physiol-Heart Circ Physiol 1997; 272: H2942–62.

    • Crossref
    • Export Citation
  • [6]

    Clark JE, Marber MS. Advancements in pressure-volume catheter technology—stress remodelling after infarction. Exp Physiol 2013; 98: 614–621.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    Colacino FM, Moscato F, Piedimonte F, Arabia M, Danieli GA. Left ventricle load impedance control by apical VAD can help heart recovery and patient perfusion: a numerical study. ASAIO J 2007; 53: 263–277.

    • Crossref
    • PubMed
    • Export Citation
  • [8]

    Gesenhues J, Hein M, Albin T, Rossaint R, Abel D. Cardiac modeling: identification of subject specific left-ventricular isovolumic pressure curves. IFAC-PapersOnLine 2015; 48: 581–586.

    • Crossref
    • Export Citation
  • [9]

    Gesenhues J, Hein M, Ketelhut M, et al. Benefits of objectoriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology. Biomed Eng-Biomed Tech 2017; 62: 111–121

  • [10]

    Kaufmann TA, Neidlin M, Büsen M, Sonntag SJ, Steinseifer U. Implementation of intrinsic lumped parameter modeling into computational fluid dynamics studies of cardiopulmonary bypass. J Biomech 2014; 47: 729–735.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    Kjørstad KE, Korvald C, Myrmel T. Pressure-volume-based single-beat estimations cannot predict left ventricular contractility in vivo. Am J Physiol Heart Circ Physiol2002; 282: H1739–H1750.

  • [12]

    Kono A, Maughan WL, Sunagawa K, Hamilton K, Sagawa K, Weisfeldt ML. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation 1984; 70: 1057–65.

    • Crossref
    • PubMed
    • Export Citation
  • [13]

    Kormos RL, Teuteberg JJ, Pagani FD, et al. HeartMate II Clinical Investigators. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 2010; 139: 1316–1324.

    • Crossref
    • PubMed
    • Export Citation
  • [14]

    Leaning MS, Pullen HE, Carson ER, Finkelstein L. Modelling a complex biological system: the human cardiovascular system1. Methodology and model description. Trans Inst Meas Control 1983; 5: 71–86.

    • Crossref
    • Export Citation
  • [15]

    Ramakrishna H, Feinglass N, Augoustides JG. Clinical update in cardiac imaging including echocardiography. J Cardiothorac Vasc Anesth 2010; 24: 371–378.

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    Roger VL. Epidemiology of heart failure. Circ Res 2013; 113: 646–659.

    • Crossref
    • Export Citation
  • [17]

    Saito S, Toda K, Nakamura T, et al. Should destination therapy with implantable left ventricular assist device replace heart transplantation? J Card Failure 2015; 21: S151.

    • Crossref
    • Export Citation
  • [18]

    Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol 2011; 107: 126–138.

    • Crossref
    • PubMed
    • Export Citation
  • [19]

    Spitzer VM, Whitlock DG. The visible human dataset: the anatomical platform for human simulation. Anatom Rec 1998; 253: 49–57.

    • Crossref
    • Export Citation
  • [20]

    Takeuchi M, Igarashi Y, Tomimoto S, et al. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 1991; 83: 202–212.

    • Crossref
    • PubMed
    • Export Citation
  • [21]

    ten Brinke EA, Klautz RJ, Tulner SA, et al. Clinical and functional effects of restrictive mitral annuloplasty at midterm follow-up in heart failure patients. Ann Thorac Surg 2010; 90: 1913–1920.

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    Ursino M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol 1998; 275: H1733–H1747.

  • [23]

    Vandenberghe S, Segers P, Steendijk P, et al. Modeling ventricular function during cardiac assist: does time-varying elastance work? ASAIO J 2006; 52: 4–8.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

    Westerhof N, Lankhaar J, Westerhof B. The arterial Windkessel. Med Biol Eng Comput 2009; 47.2: 131–141.

  • [25]

    Yu Y, Porter J. Mathematical modeling of ventricular suction induced by a rotary ventricular assist device. In: American Control Conference. Minneapolis, MN, USA, 2006.

  • [26]

    Zimmermann W-H. Strip and dress the human heart. Circ Res 2016; 118: 12–13.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice. All articles are peer-reviewed.

 

Search