Comparison of novel physiological load-adaptive control strategies for ventricular assist devices

Moriz Habigt 1 , Maike Ketelhut 2 , Jonas Gesenhueshttp://orcid.org/0000-0003-4476-8727 2 , Frank Schrödel 2 , Marc Hein 3 , Mare Mechelinck 3 , Thomas Schmitz-Rode 4 , Dirk Abel 2 ,  and Rolf Rossaint 3
  • 1 Department of Anaesthesiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany, Phone: +49 80 88179
  • 2 Institute of Automatic Control, RWTH Aachen University, 52072 Aachen, Germany
  • 3 Department of Anaesthesiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
  • 4 Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
Moriz Habigt, Maike Ketelhut, Jonas GesenhuesORCID iD: http://orcid.org/0000-0003-4476-8727, Frank Schrödel, Marc Hein, Mare Mechelinck, Thomas Schmitz-Rode, Dirk Abel and Rolf Rossaint

Abstract

Terminal heart failure (HF) is the most prevalent cause of death in the Western world and the implantation of a left ventricular assist device (LVAD) has become the gold standard therapy today. Most of the actually implanted devices are driven at a constant speed (CS) regardless of the patient’s physiological demand. A new physiological controller [power ratio (PR) controller], which keeps a constant ratio between LVAD power and left ventricular power, a previous concept [preload responsive speed (PRS) controller], which adds a variable LVAD power to reach a defined stroke work, and a CS controller were compared with an unimpaired ventricle in a full heart computer simulation model. The effects of changes in preload, afterload and left ventricular contractility are displayed by global hemodynamics and ventricular pressure-volume loops. Both physiological controllers demonstrated the desired load dependency, whereas the PR controller exceeded the PRS controller in response to an increased load and contractility. Response was inferior when preload or contractility was decreased. Thus, the PR controller might lead to an increased exercise tolerance of the patient. Additional studies are required to evaluate the controllers in vivo.

  • [1]

    AlOmari AH, Savkin AV, Stevens M, et al., Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiol Meas 2013; 34: R1–R27.

    • Crossref
    • PubMed
    • Export Citation
  • [2]

    Amacher R, Ochsner G, Ferreira A, Vandenberghe S, Daners MS. A robust reference signal generator for synchronized ventricular assist devices. IEEE Trans Biomed Eng 2013; 60: 2174–2183.

    • Crossref
    • PubMed
    • Export Citation
  • [3]

    Baan J, van der Velde ET, Steendijk P. Ventricular pressure-volume relations in vivo. Eur Heart J 1992; 13(suppl E): 2–6.

    • Crossref
    • PubMed
    • Export Citation
  • [4]

    Bakouri MA, Salamonsen RF, Savkin AV, Alomari AH, Lim E, Lovell NH. Physiological control of implantable rotary blood pumps for heart failure patients. Conf pro IEEE Eng Med Biol Soc 2013; 2013: 675–678.

  • [5]

    Brubaker PH, Kitzman DW. Prevalence and management of chronotropic incompetence in heart failure. Curr Cardiol Rep 2007; 9: 229–235.

    • Crossref
    • PubMed
    • Export Citation
  • [6]

    Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol 2011; 8: 30–41.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    Choi S, Boston JR, Antaki JF. Hemodynamic controller for left ventricular assist device based on pulsatility ratio. Artif Organs 2007; 31: 114–125.

    • Crossref
    • PubMed
    • Export Citation
  • [8]

    Chung DC, Niranjan SC, Clark Jr JW, et al., A dynamic model of ventricular interaction and pericardial influence. Am J Physiol 1997; 272(6 Pt 2): H2942–H2962.

    • PubMed
    • Export Citation
  • [9]

    Compostella L, Russo N, Setzu T, Compostella C, Bellotto F. Exercise performance of chronic heart failure patients in the early period of support by an axial-flow left ventricular assist device as destination therapy. Artif Organs 2014; 38: 366–373.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

    Ferreira A, Boston JR, Antaki JF. A control system for rotary blood pumps based on suction detection. IEEE Trans Biomed Eng 2009; 56: 656–665.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    Fisher ML, Nutter DO, Jacobs W, Schlant RC. Hemodynamic responses to isometric exercise (handgrip) in patients with heart-disease. Br Heart J 1973; 35: 422–432.

    • Crossref
    • PubMed
    • Export Citation
  • [12]

    Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 2009; 54: 375–385.

    • Crossref
    • PubMed
    • Export Citation
  • [13]

    Gesenhues J, Hein M, Habigt M, Mechelinck M, Albin T, Abel D. Nonlinear object-oriented modeling based optimal control of the heart: performing precise preload manipulation maneuvers using a ventricular assist device. European Control Conference. ECC 2016, 2016.

  • [14]

    Giridharan GA, Pantalos GM, Gillars KJ, Koenig SC, Skliar M. Physiologic control of rotary blood pumps: an in vitro study. ASAIO J 2004; 50: 403–409.

    • Crossref
    • Export Citation
  • [15]

    Glower DD, Spratt JA, Snow ND, et al., Linearity of the frank-starling relationship in the intact heart-the concept of preload recruitable stroke work. Circulation 1985; 71: 994–1009.

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    Hein M, Roehl AB, Baumert JH, et al., Xenon and isoflurane improved biventricular function during right ventricular ischemia and reperfusion. Acta Anaesthesiol Scand 2010; 54: 470–478.

    • Crossref
    • PubMed
    • Export Citation
  • [17]

    Helfant RH, Devilla MA, Meister SG. Effect of sustained isometric handgrip exercise on left ventricular performance. Circulation 1971; 44: 982–993.

    • Crossref
    • PubMed
    • Export Citation
  • [18]

    Hsu PL, Bruch J, McMahon R. A controller for a miniature intra-aortic ventricular assist device. Artif Organs 2011; 35: 282–287.

    • Crossref
    • PubMed
    • Export Citation
  • [19]

    Janicki J, Weber K, McElroy P. Use of the cardiopulmonary exercise test to evaluate the patient with chronic heart failure. Eur Heart J 1988; 9(suppl H): 55–58.

    • Crossref
    • PubMed
    • Export Citation
  • [20]

    Jansen-Park S-H, Spiliopoulos S, Deng H, et al., A monitoring and physiological control system for determining aortic valve closing with a ventricular assist device. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery 2014.

    • PubMed
    • Export Citation
  • [21]

    Jung MH, Hansen PB, Sander K, et al., Effect of increasing pump speed during exercise on peak oxygen uptake in heart failure patients supported with a continuous-flow left ventricular assist device. A double-blind randomized study. Eur J Heart Fail 2014; 16: 403–408.

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    Kirk JA, Kass DA. Electromechanical dyssynchrony and resynchronization of the failing heart. Circ Res 2013; 113: 765–776.

    • Crossref
    • PubMed
    • Export Citation
  • [23]

    Kirklin JK, Naftel DC, Pagani FD, et al., Long-term mechanical circulatory support (destination therapy): On track to compete with heart transplantation? J Thorac Cardiovasc Surg 2012; 144: 584–603.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

    Kirklin JK, Naftel DC, Pagani FD, et al., Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 2015; 34: 1495–1504.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    Kivowitz C, Parmley WW, Donoso R, Marcus H, Ganz W, Swan HJC. Effects of isometric exercise on cardiac performance – grip test. Circulation 1971; 44: 994–1002.

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    Krabatsch T, Potapov E, Soltani S, Dandel M, Falk V, Knosalla C. Ventrikuläre Langzeitunterstützung mit implantierbaren kontinuierlichen Flusspumpen. Herz 2015; 40: 231–239.

    • Crossref
    • Export Citation
  • [27]

    Levine TB, Francis GS, Goldsmith SR, Cohn JN. The neurohumoral and hemodynamic response to orthostatic tilt in patients with congestive heart failure. Circulation 1983; 67: 1070–1075.

    • Crossref
    • PubMed
    • Export Citation
  • [28]

    Lund LH, Edwards LB, Kucheryavaya AY, et al., The registry of the international society for heart and lung transplantation: Thirty-first Official Adult Heart Transplant Report – 2014; Focus Theme: Retransplantation. J Heart Lung Transplant 33: 996–1008.

  • [29]

    Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006; 8: 417–426.

    • Crossref
    • PubMed
    • Export Citation
  • [30]

    Markham DW, Fu Q, Palmer MD, et al., Sympathetic neural and hemodynamic responses to upright tilt in patients with pulsatile and nonpulsatile left ventricular assist devices. Circ Heart Fail 2013; 6: 293–299.

    • Crossref
    • PubMed
    • Export Citation
  • [31]

    Mauth H. Implementation of a basic controller for a left ventricular assist device. RWTH Aachen University 2014.

  • [32]

    Nichols M, Townsend N, Luengo-Fernandez R, et al., European Cardiovascular Disease Statistics 2012. European Heart Network, Brussels, European Society of Cardiology, Sophia Antipolis 2012.

  • [33]

    Noor MR, Bowles C, Banner NR. Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: influence of residual left ventricular function. Eur J Heart Fail 2012; 14: 613–620.

    • Crossref
    • PubMed
    • Export Citation
  • [34]

    Ochsner G, Amacher R, Wilhelm MJ, et al., A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Artif Organs 2014; 38: 527–538.

    • Crossref
    • PubMed
    • Export Citation
  • [35]

    Rose EA Gelijns AC, Moskowitz AJ, et al., Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001; 345: 1435–1443.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    Salamonsen RF, Lim E, Gaddum N, et al., Theoretical foundations of a Starling-like controller for rotary blood pumps. Artif Organs 2012; 36: 787–796.

    • Crossref
    • PubMed
    • Export Citation
  • [37]

    Schima H, Vollkron M, Jantsch U, et al., First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization. J Heart Lung Transplant 2006; 25: 167–173.

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    Schrödel F, Schindler D, Claver A, Hein M, Abel D. A Physiological Control Strategy for Continuous-Flow Left Ventricular Assist Devices: The Power Ratio Controller. European Control Conference. ECC 2016, 2016.

  • [39]

    Seongjin C, Antaki JF, Boston JR, Thomas D. A sensorless approach to control of a turbodynamic left ventricular assist system. Control Systems Technology IEEE Transactions 2001; 9: 473–482.

    • Crossref
    • Export Citation
  • [40]

    Slaughter MS, Rogers JG, Milano CA, et al., Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009; 361: 2241–2251.

    • Crossref
    • PubMed
    • Export Citation
  • [41]

    Stainback RF, Estep JD, Agler DA, et al., Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American society of echocardiography. J Am Soc Echocardiogr 2015; 28: 853–909.

    • Crossref
    • PubMed
    • Export Citation
  • [42]

    Sullivan MJ, Hawthorne MH. Exercise intolerance in patients with chronic heart failure. Prog Cardiovasc Dis 1995; 38: 1–22.

    • Crossref
    • PubMed
    • Export Citation
  • [43]

    Wang Y, Koenig SC, Slaughter MS, Giridharan GA. Rotary blood pump control strategy for preventing left ventricular suction. ASAIO J 1992; 2014.

  • [44]

    Wang Y, Koenig SC, Slaughter MS, Giridharan GA. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters. ASAIO J 2015; 61: 170–177.

    • Crossref
    • PubMed
    • Export Citation
  • [45]

    Weber KT, Janicki JS. Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol 1985; 55: 22A–31A.

    • Crossref
    • PubMed
    • Export Citation
  • [46]

    Westerhof N, Lankhaar J-W, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput 2009; 47: 131–141.

    • Crossref
    • PubMed
    • Export Citation
  • [47]

    Wu Y. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters. ASAIO J 2009; 55: 335–339.

    • Crossref
    • PubMed
    • Export Citation
  • [48]

    Young DB. Control of cardiac output. Colloquium Series on Integrated Systems Physiology: From Molecule to Function 2010; 2: 1–97.

  • [49]

    Zile MR, Kjellstrom B, Bennett T, et al., Effects of exercise on left ventricular systolic and diastolic properties in patients with heart failure and a preserved ejection fraction versus heart failure and a reduced ejection fraction. Circ Heart Fail 2013; 6: 508–516.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice. All articles are peer-reviewed.

 

Search