Short Peptides in Minimalistic Biocatalyst Design

Krystyna L. Duncan 1  and Rein V. Ulijn 1 , 2
  • 1 WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • 2 Advanced Science Research Center (ASRC) and Hunter College, City University of New York, 85 St Nicholas Terrace, New York, NY10031, USA


We review recent developments in the use of short peptides in the design of minimalistic biocatalysts focusing on ester hydrolysis. A number of designed peptide nanostructures are shown to have (modest) catalytic activity. Five features are discussed and illustrated by literature examples, including primary peptide sequence, nanosurfaces/scaffolds, binding pockets, multivalency and the presence of metal ions. Some of these are derived from natural enzymes, but others, such as multivalency of active sites on designed nanofibers, may give rise to new features not found in natural enzymes. Remarkably, it is shown that each of these design features give rise to similar rate enhancements in ester hydrolysis. Overall, there has been significant progress in the development of fundamental understanding of the factors that influence binding and activity in recent years, holding promise for increasingly rational design of peptide based biocatalysts.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Palmer T., Understanding enzymes, Prentice Hall/Ellis Horwood, London ; New York, 1995.

  • [2] Stryer L., Biochemistry, W.H. Freeman Company, New York, 1995.

  • [3] Greenwald J., Riek R., On the Possible Amyloid Origin of Protein Folds, J. Mol. Biol., 2012, 421, 417-426.

  • [4] Carny O., Gazit E., A model for the role of short self-assembled peptides in the very early stages of the origin of life, FASEB J., 2005, 19, 1051-1055.

  • [5] Neurath H., Walsh K.A., Role of Proteolytic-Enzymes in Biological Regulation, Proc. Natl. Acad. Sci. U.S.A., 1976, 73, 3825-3832.

  • [6] Neurath H., Evolution of Proteolytic-Enzymes, Science., 1984, 224, 350-357.

  • [7] Carter P., Wells J.A., Dissecting the Catalytic Triad of a Serine Protease, Nature., 1988, 332, 564-568.

  • [8] Li Y.S., Zhao Y.F., Hatfield S., Wan R., Zhu Q., Li X.H., McMills M., Ma Y., Li J., Brown K.L., et al., Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester, Bioorg. Med. Chem., 2000, 8, 2675-2680.

  • [9] Wolfenden R., Snider M.J., The depth of chemical time and the power of enzymes as catalysts, Acc. Chem. Res., 2001, 34, 938-945.

  • [10] Miller B.G., Wolfenden R., Catalytic proficiency: The unusual case of OMP decarboxylase, Annu. Rev. Biochem., 2002, 71, 847-885.

  • [11] Steitz T.A., Shulman R.G., Crystallographic and Nmr-Studies of the Serine Proteases, Annu. Rev. Biophys. Bio., 1982, 11, 419-444.

  • [12] Polgar L., The catalytic triad of serine peptidases, Call. Mol. Life. Sci., 2005, 62, 2161-2172.

  • [13] Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V., Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 1998, 62, 597-635.

  • [14] J. M. Berg J.L.T., L. Stryer, Biochemistry. 5th Edition., W H Freeman, New York, 2002.

  • [15] Reetz M.T., Torre C., Eipper A., Lohmer R., Hermes M., Brunner B., Maichele A., Bocola M., Arand M., Cronin A., et al., Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution, Org. Lett., 2004, 6, 177-180.

  • [16] You L., Arnold F.H., Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide, Protein Eng., 1996, 9, 77-83.

  • [17] Arnold F.H., Design by directed evolution, Acc. Chem. Res., 1998, 31, 125-131.

  • [18] Vriezema D.M., Aragones M.C., Elemans J.A.A.W., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M., Self-assembled nanoreactors, Chem. Rev., 2005, 105, 1445-1489.

  • [19] Pasquato L., Pengo P., Scrimin P., Functional gold nanoparticles for recognition and catalysis, J. Mater. Chem., 2004, 14, 3481-3487.

  • [20] Gorlero M., Wieczorek R., Adamala K., Giorgi A., Schinina M.E., Stano P., Luisi P.L., Ser-His catalyses the formation of peptides and PNAs, FEBS Lett., 2009, 583, 153-156.

  • [21] Zhang S., Holmes T., Lockshin C., Rich A., Spontaneous assembly of a self-complementary oligopeptide to form a sTable macroscopic membrane, Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 3334-3338.

  • [22] Reches M., Gazit E., Casting metal nanowires within discrete self-assembled peptide nanotubes, Science., 2003, 300, 625-627.

  • [23] Hartgerink J.D., Beniash E., Stupp S.I., Self-assembly and mineralization of peptide-amphiphile nanofibers, Science., 2001, 294, 1684-1688.

  • [24] Guler M.O., Soukasene S., Hulvat J.F., Stupp S.I., Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles, Nano Lett., 2005, 5, 249-252.

  • [25] Jayawarna V., Ali M., Jowitt T.A., Miller A.E., Saiani A., Gough J.E., Ulijn R.V., Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl- dipeptides, Adv. Mater., 2006, 18, 611-614.

  • [26] Yang Z., Xu B., Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules, J. Mater. Chem., 2007, 17, 2385-2393.

  • [27] Guler M.O., Stupp S.I., A self-assembled nanofiber catalyst for ester hydrolysis, J. Am. Chem. Soc., 2007, 129, 12082-12083.

  • [28] Fleming S., Ulijn R.V., Design of nanostructures based on aromatic peptide amphiphiles, Chem. Soc. Rev., 2014, 43, 8150-8177.

  • [29] Huang Z.P., Guan S.W., Wang Y.G., Shi G.N., Cao L.N., Gao Y.Z., Dong Z.Y., Xu J.Y., Luo Q., Liu J.Q., Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model, Journal of Materials Chemistry B, 2013, 1, 2297-2304.

  • [30] Mahler A., Reches M., Rechter M., Cohen S., Gazit E., Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide, Adv. Mater., 2006, 18, 1365-1370.

  • [31] Zhang C.Q., Xue X.D., Luo Q., Li Y.W., Yang K.N., Zhuang X.X., Jiang Y.G., Zhang J.C., Liu J.Q., Zou G.Z., et al., Self-Assembled Peptide Nanofibers Designed as Biological Enzymes for Catalyzing Ester Hydrolysis, Acs Nano, 2014, 8, 11715-11723.

  • [32] Aggeli A., Bell M., Boden N., Keen J.N., Knowles P.F., McLeish T.C.B., Pitkeathly M., Radford S.E., Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes, Nature., 1997, 386, 259-262.

  • [33] Collier J.H., Messersmith P.B., Enzymatic modification of self-assembled peptide structures with tissue transglutaminase, Bioconjugate Chem., 2003, 14, 748-755.

  • [34] Jung J.P., Nagaraj A.K., Fox E.K., Rudra J.S., Devgun J.M., Collier J.H., Co-assembling peptides as defined matrices for endothelial cells, Biomaterials., 2009, 30, 2400-2410.

  • [35] Rufo C.M., Moroz Y.S., Moroz O.V., Stohr J., Smith T.A., Hu X.Z., DeGrado W.F., Korendovych I.V., Short peptides self-assemble to produce catalytic amyloids, Nat. Chem., 2014, 6, 303-309.

  • [36] Wei Y.N., Hecht M.H., Enzyme-like proteins from an unselected library of designed amino acid sequences, Protein Eng., Des. Sel., 2004, 17, 67-75.

  • [37] Patel S.C., Bradley L.H., Jinadasa S.P., Hecht M.H., Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins, Protein Sci., 2009, 18, 1388-1400.

  • [38] Baltzer L., Broo K.S., Nilsson H., Nilsson J., Designed four-helix bundle catalysts - the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters, Bioorg. Med. Chem., 1999, 7, 83-91.

  • [39] Broo K.S., Brive L., Ahlberg P., Baltzer L., Catalysis of hydrolysis and transesterification reactions of p-nitrophenyl esters by a designed helix-loop-helix dimer, J. Am. Chem. Soc., 1997, 119, 11362-11372.

  • [40] Singh N., Conte M.P., Ulijn R.V., Miravet J.F., Escuder B., Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator, Chem. Commun., (in press), DOI: 10.1039/c5cc04281j.

  • [41] Zaramella D., Scrimin P., Prins L.J., Self-Assembly of a Catalytic Multivalent Peptide-Nanoparticle Complex, J. Am. Chem. Soc., 2012, 134, 8396-8399.

  • [42] Maeda Y., Javid N., Duncan K., Birchall L., Gibson K.F., Cannon D., Kanetsuki Y., Knapp C., Tuttle T., Ulijn R.V., et al., Discovery of Catalytic Phages by Biocatalytic Self-Assembly, J. Am. Chem. Soc., 2014, 136, 15893-15896.

  • [43] Rodriguez-Llansola F., Escuder B., Miravet J.F., Switchable Perfomance of an L-Proline-Derived Basic Catalyst Controlled by Supramolecular Gelation, J. Am. Chem. Soc., 2009, 131, 11478-11484.

  • [44] Rodriguez-Llansola F., Miravet J.F., Escuder B., A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reaction, Chem. Commun., 2009, 7303-7305.

  • [45] Pasquato L., Rancan F., Scrimin P., Mancin F., Frigeri C., N-methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester, Chem. Commun., 2000, 2253-2254.

  • [46] Zaramella D., Scrimin P., Prins L.J., Catalysis of Transesterification Reactions by a Self-Assembled Nanosystem, Int. J. Mol. Sci., 2013, 14, 2011-2021.

  • [47] Casey J.P., Barbero R.J., Heldman N., Belcher A.M., Versatile de Novo Enzyme Activity in Capsid Proteins from an Engineered M13 Bacteriophage Library, J. Am. Chem. Soc., 2014, 136, 16508-16514.


Journal + Issues