Interactions between kelp spores and encrusting and articulated corallines: recruitment challenges for Lessonia spicata

Gloria M. Parada 1 , Enrique A. Martínez 2 , 3 , Moisés A. Aguilera 3 , Mauricio H. Oróstica 4  and Bernardo R. Broitman 2
  • 1 Visión Oceánica Ltda, Sucre 1900 of, 1002 Santiago, Chile
  • 2 Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
  • 3 Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
  • 4 School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
Gloria M. Parada
  • Visión Oceánica Ltda, Sucre 1900 of, 1002 Santiago, Chile
  • Further information
  • Gloria M. Parada obtained her degree in marine biology from the Universidad de Valparaíso (Chile) and her Master of Science in management of marine resources from CICIMAR-IPN (La Paz, B.C.S. Mexico). Her research focused on several ecological aspects of the Laminariales and she worked for several years designing investment projects for rural communities and small-scale fishermen of the Chilean coasts. At present, she works for Visión Oceánica Ltd. and CARMAC Foundation, Chile.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Enrique A. Martínez
  • Corresponding author
  • Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
  • Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
  • Email
  • Further information
  • Enrique A. Martínez, here holding a specimen of Fucus vesiculosus from the Atlantic Ocean of northern France, obtained his PhD from the Pontificia Universidad Católica where he worked on the ecology and evolution of microscopic stages of Chilean kelps. He lives in southern France where he still does some research, searching how to live in a more sustainable society.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Moisés A. Aguilera
  • Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
  • Further information
  • Moisés A. Aguilera is a full professor and researcher at the Department of Marine Biology of the Universidad Católica del Norte at Coquimbo, Chile. He obtained his PhD in ecology in 2010 at the Pontificia Universidad Católica de Chile. His research interest includes impacts of coastal urbanization on community structure and functioning and processes related to urban ecology in general. In addition, the main focus of his research has centered on an experimental-based perspective, especially related to alga-herbivore interaction strengths.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Mauricio H. Oróstica
  • School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
  • Further information
  • Mauricio H. Oróstica obtained his degree in marine biology from Universidad Católica de la Santísima Concepción-Chile and his MSc degree in marine science from Universidad Católica del Norte-Chile. His interest is focused on intertidal ecology, particularly on the processes, as well as mechanisms, that affect the intertidal landscape at small and large spatial scales. Since 2015, he is a PhD student at the School of Ocean Sciences in Bangor University, UK, funded by the National Commission for Scientific and Technological Research (CONICYT, Chilean government).
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Bernardo R. Broitman
  • Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Ossandón 877, Coquimbo, Chile
  • Further information
  • Bernardo R. Broitman is a lead researcher at the Centro de Estudios Avanzados en Zonas Aridas (CEAZA) and a PhD in ecology, evolution and marine biology from the University of California, Santa Barbara. His primary scientific interest is understanding the role of biophysical forcing on ecological interactions, using intertidal communities in upwelling regions. His transdisciplinary interest has prompted him to investigate the socio-ecological system around shellfish aquaculture in order to understand the principles underpinning their sustainability.
  • Search for other articles:
  • degruyter.comGoogle Scholar


Intertidal kelps like Lessonia spicata (Laminariales) dominate low intertidal habitats, where they coexist with morphologically diverse coralline seaweeds. We show that crustose and articulated coralline algae have contrasting effects on the settlement and recruitment of this kelp species. Crustose coralline algae significantly inhibited the settlement of kelp spores, while they readily settled on the genicula of articulated coralline algae. This pattern was observed both in laboratory experiments and in field experiments conducted in the low intertidal zone at three locations. Field surveys confirmed that L. spicata juveniles were significantly more likely to be found on articulated corallines than on crustose corallines. This pattern held in field surveys at 10 sites, where primary space occupancy of L. spicata showed a significant negative correlation with the cover of crustose coralline algae in 3 out of 4 years, across all sites. Our results provide an important ecological clue to the processes determining recruitment limitation for ecologically and economically important seaweeds, and support conservation and management actions.

  • Aguilera, M.A., N. Valdivia and B.R. Broitman. 2015. Herbivore-alga interaction strength influences spatial heterogeneity in a kelp dominated intertidal community. PLoS One 10: e0137287.

  • Akioka, H., M. Baba, T. Masaki and W. Johansen. 1999. Rocky shores turfs dominated by Corallina (Corallinales, Rodophyta) in northern Japan. Phycol. Res. 47: 199–206.

  • Barner, A., S.D. Hacker, B.A. Mengel and K. J. Mielsen. 2016. The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community. J. Ecol. 104: 33–43.

  • Brisson, L.F., R. Tenhaken and C. Lamb. 1994. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703–1712.

  • Broitman, B.R., S.A. Navarrete, F. Smith and S.D. Gaines. 2001. Geographic variation of Southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224: 21–34.

  • Broitman, B.R., F. Veliz, T. Manzur, E.A. Wieters, G.R. Finke, N. Valdivia, P. Fornes and S.A. Navarrete. 2011. Geographic variation in diversity of wave exposed rocky intertidal communities along central Chile. Rev. Chil. Hist. Nat. 84: 143–154.

  • Buschmann, A.H. 1990. The role of herbivory and desiccation on early successional patterns of intertidal macroalgae in southern Chile. J. Exp. Mar. Biol. Ecol. 139: 221–230.

  • Camus, P.A. 1994. Recruitment of the intertidal kelp Lessonia nigrescens Bory in northern Chile: successional constraints and opportunities. J. Exp. Mar. Biol. Ecol. 184: 171–181.

  • Camus, P.A. 2008. Understanding biological impacts of ENSO on the eastern Pacific: an evolving scenario. Int. J. Environ. Health 2: 5–19.

  • Coull, B.C. and J.B.J. Wells. 1983. Refuges from fish predation: Experimental with phytal meiofauna fron the New Zealand rocky intertidal. Ecology 64: 1599–1609.

  • Figueiredo, M.A. de O., J.M. Kain (Jones) and T.A. Norton. 2000. Responses of crustose corallines to epiphyte and canopy cover. J. Phycol. 36: 17–24.

  • Filbee-Dexter, K. and R.E. Scheibling. 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Progr. Ser. 495: 1–25.

  • Franco, J.N., T. Wernberg, I. Bertocci, P. Duarte, D. Jacinto, N. Vasco-Rodrigues and F. Tuya. 2015. Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate. Mar. Ecol. Progr. Ser. 536: 1–9.

  • Gaylord, B., D.C. Reed, L. Washburn and P.T. Raimondi. 2004. Physical-biological coupling in spore dispersal of kelp forest macroalgae. J. Marine Syst. 49: 19–39.

  • Gaylord, B., D.C. Reed, P.T. Raimondi and L. Washburn. 2006. Macroalgal spore dispersal in coastal environments: Mechanistic insights revealed by theory and experiment. Ecolo. Monogr. 76: 481–502.

  • Hay, M.E. 1986. Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Amer. Nat. 128: 617–641.

  • Hicks, G.R.F. 1986. Meiofauna associated with rocky shore algae. In: (P.G. Moore and R. Seed, eds) The Ecology of Rocky Coasts. Columbia University Press, New York. pp. 36–56.

  • Irving, A.D., S.D. Connell and T.S. Elsdon. 2004. Effects on kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310: 1–12.

  • Keats, D.W., A. Groener and Y.M. Chamberlain. 1993. Cell sloughing in the littoral zone coralline alga, Spongites yendoi (Foslie) Chamberlain (Corallinales, Rhodophyta). Phycologia 32: 143–150.

  • Kim, M.J., J.S. Choi, S.E. Kang, J.Y. Cho, H.J. Jin, B.S. Chun and Y.K. Hong. 2004. Multiple allelopathic activity of the crustose coralline alga Lythophyllum yessoense against settlement and germination of seaweed spores. J. Appl. Phycol. 16: 175–179.

  • Küpper, F.C., B. Kloareg, J. Guern and F. Potin. 2001. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol. 125: 278–291.

  • Ling, S.D., R.E. Scheibling, A. Rassweiler, C.R. Johnson, N. Shears, S.D. Connell, A.K. Salomon, K.M. Norderhaug, A. Pérez-Matus, J.C. Hernández, S. Clemente, L.K. Blamey, B. Hereu, E. Ballesteros, E. Sala, J. Garrabou, E. Cebrian, M. Zabala, D. Fujita and L.E. Johnson. 2015. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370: 20130269.

  • Martínez, E.A. 1999. Latitudinal differences in thermal tolerance among microscopic sporophytes of the kelp Lessonia nigrescens (Phaeophyta, Laminariales). Pacific Science 53: 74–81.

  • Martínez, E. and J.A. Correa. 1993. Sorus-specific epiphytism affecting the kelps Lessonia nigrescens and L. trabeculata (Phaeophyta). Mar. Ecol. Prog. Ser. 96: 83–92.

  • Martínez, E.A. and B. Santelices. 1998. Selective mortality on haploid and diploid microscopic stages of Lessonia nigrescens Bory (Phaeophyta, Laminariales). J. Exp. Mar. Biol. Ecol. 229: 219–239.

  • Martínez, E.A., L. Cárdenas and R. Pinto. 2003. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/83. J. Phycol. 39: 504–508.

  • Masaki, T., D. Fujita and H. Akioka. 1981. Observation on the spore germination of Laminaria japonica on Lithophyllum yessoense (Rhodophyta, Corallinaceae) in culture. Bull. Fac. Fish. Hokk. Univ. 32: 349–356.

  • Masaki, T., D. Fujita and N.T. Hagen. 1984. The surface ultrastructure and epithallium shedding of crustose coralline algae in an “isoyake” area of south-western Hokkaido, Japan. Hydrobiologia 116/117: 218–233.

  • Melville, A.J. and S.D. Connell. 2001. Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecol. 26: 102–108.

  • Milligan, K.L.D. and R.E. DeWreede. 2000. Variations in holdfast attachments mechanics with developmental stage, substratum type, season, and wave exposure for the intertidal kelp species Hedophyllum sessile (C. Agardh) Setchell. J. Exp. Mar. Biol. Ecol. 254: 189–209.

  • Okazaki, M., K. Furuja, K. Tsukayama and K. Nisizawa. 1982. Isolation and identification of alginic acid from a calcareous red alga Serraticardia maxima. Bot. Mar. 25: 123–131.

  • Oróstica, M.H., M.A. Aguilera, G.A. Donoso, J.A. Vásquez and B.R. Broitman. 2014. Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Mar. Ecol. Prog. Ser. 511: 71–82.

  • Otte, O. and W. Barz. 1996. The elicitor-induced oxidative burst in cultivated chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200: 238–246.

  • Parada, G.M. 2001. Factores inhibitorios y facilitadores en el reclutamiento de Lessonia nigrescens (Bory 1826). Marine Biology degree thesis. Universidad de Valparaíso. Chile.

  • Parada, G.M., F. Tellier and E.A. Martínez. 2016. Spore dispersal in the intertidal kelp Lessonia spicata: Macrochallenges for the harvested Lessonia species complex at microscales of space and time. Bot. Mar. 59: 283–289.

  • Rodríguez, D.C., M.H. Oróstica and J.A. Vásquez. 2014. Coalescence in wild organisms of the intertidal population of Lessonia berteroana in northern Chile: management and sustainability effects. J. Appl. Phycol. 26: 1115–1122.

  • Santelices, B. 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanog. Mar. Biol. Ann. Rev. 28: 177–276.

  • Santelices, B. and P.F. Ojeda. 1984. Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar. Ecol. Prog. Ser. 19: 73–82.

  • Steneck, R.S. and M.N. Dethier. 1994. A Functional group approach to the structure of algal-dominated communities. Oikos 69: 476–498.

  • Suzuki, Y., T. Takabayashi, T. Kawaguchi and K. Matsunaga. 1998. Isolation of an allelopathic substance from the crustose coralline alga, Lithophyllum spp, and its effect on the brown alga Laminaria religiosa Miyabe (Phaeophyta). J. Exp. Mar. Biol. Ecol. 225: 69–77.

  • Tellier, F., J.M.A. Vega, B.R. Broitman, J.A. Vásquez, M. Valero and S. Faugeron. 2011. The importance of having two species instead of one in kelp management: the Lessonia nigrescens species complex. Cah. Biol. Mar. 52: 455–465.

  • Vásquez, J.A. 2008. Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J. Appl. Phycol. 20: 457–467.

  • Vásquez, J.A., N. Piaget and J.M.A. Vega. 2012. The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest”. J. Appl. Phycol. 24: 417–426.

  • Vega, J.M.A., B.R. Broitman and J.A. Vásquez. 2014. Monitoring the sustainability of Lessonia nigrescens (Laminariales, Phaeophyceae) in northern Chile under strong harvest pressure. J. Appl. Phycol. 26: 791–801.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues

Botanica Marina publishes high-quality contributions from all of the disciplines of marine botany at all levels of biological organisation from subcellular to ecosystem: chemistry and applications, genomics, physiology and ecology, phylogeny and biogeography. Research involving global or interdisciplinary interest is especially welcome as well as applied science papers dealing with emerging conceptual issues or developing technologies.