Simulation of land use impacts on sediment and nutrient transfer in coastal areas of Western Cape, South Africa

Micha Gebel 1 , 2 , Stephan Bürger 2 , Michael Wallace 3 , Hanlie Malherbe 4 , Hannah Vogt 5  and Carsten Lorz 4
  • 1 HSWT University of Applied Sciences, Hans-Carl-von-Carlowitz-Platz 3, 85354 , Freising, Germany
  • 2 Gesellschaft für Angewandte Landschaftsforschung (GALF) bR, Am Ende 14, 01277 , Dresden, Germany
  • 3 Western Cape Department of Agriculture, Private Bag X1, , Elsenburg , South Africa
  • 4 HSWT University of Applied Sciences, Hans-Carl-von-Carlowitz-Platz 3, 85354 , Freising, Germany
  • 5 TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 6, 85354 , Freising, Germany

Abstract

A major challenge for water resource management in Western Cape, South Africa, is the reduction of the growing sediment and nutrient loads in coastal areas, which belong to the areas most affected by land use change. We used the WebGIS based software STOFFBILANZ to simulate runoff, soil loss, sediment, phosphorus, and nitrogen input in the surface water and groundwater of study area (ca. 6,450 km²). The simulated runoff shows a large regional variability caused by the heterogeneous distribution of rainfall. For the reference catchment Klein River simulated total daily runoff fit the observed values of the reference year 2012. The calculation of potential input of sediment, phosphorus, and nitrogen into waters is based on aggregated or generalized information on climate data, land use types, crop and fruit types, yields, mineral fertilizers, farm manure, nitrogen fixing by leguminous plants, atmospheric nitrogen deposition, and soil denitrification. Critical source areas for potential sediment input, particulate P input and diffuse N input are mainly agricultural areas. Additionally, point sources of high relevance for N and P are found in urban areas. Based on the potential input of sediment and nutrients the impacts of current land use change on water resources were estimated. We used the web-based information system WebLand for the simulation aiming at the provision of stakeholders with information for decision making in water resource management.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Gillson L., Midgley G.F., Wakeling J.L., Exploring the significance of land cover change in South-Africa, S. Afr. J. Sci., 2012, 108, 5/6

  • [2] DEAP, Western Cape State of the Environment Report 2005 (Year One), Provincial Government, Department of Environmental Affairs and Development Planning, South Africa, 2005

  • [3] DEAP, Western Cape Integrated Water Resource Management (IWRM) Action Plan: Status Quo Report Final Draft, Provincial Government, Department of Environmental Affairs and Development Planning, South Africa, 2011

  • [4] Gebel M., Halbfaß S., Bürger S., Uhlig M., STOFFBILANZ - Commentary of the STOFFBILANZ programme, 2012, http://galf-dresden.de/galf/wp-content/uploads/2013/06/Stoffbilanz_commentary.pdf

  • [5] Gebel M., Halbfaß S., Bürger S., Lorz C., Long-term simulation of effects of energy crop cultivation on nitrogen leaching and surface water quality in Saxony/Germany, Reg. Environ. Change, 2013, 13, 249-261

  • [6] Gebel M., Meißner R., Halbfaß S., Hagenau J., Duan S., Web GIS-based simulation of water fluxes in the Miyun catchment area, IForest-Biogeosci. Forestry, 2014, 7, 363-371. doi:

    • Crossref
    • Export Citation
  • [7] Gebel M., Uhlig M., Halbfass S., Meißner R., Duan S., Predicting erosion and sediment yield in a mesoscale basin in the semiarid mosoon region Miyun/China, Ecological Processes, 2014, 3, 5. doi:

    • Crossref
    • Export Citation
  • [8] Meissner R., Gebel M., Hagenau J., Halbfass S., Engelke P., Giessler M., Duan S., Lu B., Wang X., WebGIS-based approach to simulate water and solute fluxes in the Miyun basin in China, In: Borchardt D., Bogardi J., Ibisch R. (Eds.), Integrated Water Resources Management: Concept, Research and Implementation, Springer, 2016

  • [9] Lam Q.D., Schmalz B., Fohrer N., Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany, Adv. Geosci., 2009, 21, 49-55

  • [10] Krysanova V., Hattermann, F., Huang, S.H., Hesse C., Vetter T., Liersch S., Koch H., Kundzewicz Z.W., Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications, Hydrol. Sci. J., 2015, 4, 606-635

  • [11] Thomas A., Chingombe W., Ayuk J., Scheepers T., A comprehensive investigation of the Kuils-eerste river catchments water pollution and development of a catchment sustainability plan, WRC Report No. 1692/1/1, 2010

  • [12] Bath, A.J., Phosphate transport in the Berg River, Western Cape, Technical Report of the Department of Water Affairs and Forestry, Pretoria, TR 143, 1989

  • [13] Fey M.V., De Clercq W.P., A pilot study investigating the role of dryland salinity in the quality of the water of the Berg River, WRC Report, 1342/1/04, 2004

  • [14] Nitsche N., Kamish W., Görgens A.H.M., Application of hydrodynamic river flow and reservoir water quality models to the Berg River system, In: Görgens A.H.M., De Clercq W.P. (Eds.), A Water Quality Information System for Integrated Water Resource Management: The Riviersonderend-Berg River System, Final report to the Water Research Commission, Editors:, Departments of Civil Engineering and Soil Science, University of Stellenbosch, WRC Report No : TT 252/05, 2005

  • [15] DWAF, Berg River Baseline Monitoring Programme - Final Report - Volume 1, Department Water Affairs and Forestry, Report No. P WMA 19/G10/00/1707, 2007

  • [16] De Clercq W.P., Jovanovic N., Bugan R., Mashimbye D., Du Toit T., Van Niekerk A., Ellis F., Wasserfall N., Botha P., Steudels T., Helmschrot J., Flügel W., Management of human-induced salinisation in the Berg River catchment and development of criteria for regulating agricultural land use in terms of salt generating capacity, WRC Report 1849/1/13, 2013

  • [17] Le Roux J.J., Morgenthal T.L., Malherbe J., Pretorius D.J., Sumner P.D., Water erosion prediction at a national scale for South Africa, Water S.A. 2008, 34, 3.

  • [18] Maherry A., Clarke S., Tredoux G., Engelbrecht P., A spatial and temporal analysis of the Nitrate concentration in groundwater for South Africa, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), Stellenbosch, 2009

  • [19] Van den Berg E.C., Plarre C., Van den Berg H.M., Thompson M.W., The South African National Land Cover 2000, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, Report No. GW/A/2008/86, 2008

  • [20] Manning J., Field guide to Fynbos, Struik Nature, Cape Town, South Africa, 2007

  • [21] Fischer G., Nachtergaele F., Prieler S., Van Velthuizen H.T., Verelst L., Wiberg D., Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008), IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soildatabase-v12/en/

  • [22] MacVicar C.N., De Villiers J.M., Loxton R.F., Verster E., Lambrechts J.J.N., Merryweather F.R., Soil classification: A binomial system for South Africa. Dept. Agric. Tech. Services, Pretoria, 1977

  • [23] MODIS, Moderate Resolution Imaging Spectroradiometer, 2010, http://modis.gsfc.nasa.gov/data/dataprod/mod16.php

  • [24] Dentener F.J., Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050, Data set, Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A., 2006, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=830

  • [25] Allen R.G., Pereira L.S., Raes D., Smith M., Crop Evapotranspiration - guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, 1998

  • [26] NRCS, National Engineering Handbook Part 630 Hydrology - Estimation of Direct Runoff from Storm Rainfall, United States Department of Agriculture, Natural Resources Conservation Service, 2004

  • [27] Hawkins R.H., Ward T.J., Woodward D.E., Van Mullem J.A., Curve Number Hydrology: State of the Practice, American Society of Civil Engineers, Reston, Virginia, 2009

  • [28] Wischmeier W.H., Smith D.D., Predicting rainfall losses - a guide to conservation planning, USDA Agriculture Handbook, 1978, 537, 1-58

  • [29] Yu B., Rosewell C.J., A robust estimator of the R-factor for the universal loss equation, American Society of Agricultural Engineers, 1996, 2, 559-561

  • [30] Kinnell P.I.A., The USLE-M and Modeling Erosion Within Catchments, In: Stott D.E., Mohtar R.H., Steinhardt G.C. (Eds.), Sustaining the Global Farm, Selected papers from the 10th International Soil Conservation Organization on Meeting held May 24-29, 1999 at Perdue University and the USDA-ARS National Soil Erosion Research Laboratory, 2001

  • [31] Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J., System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007, DOI: 10.5194/gmd-8-1991-2015, 2015

  • [32] Arnoldus J.M.J., Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morroco, FAO Soils Bull., 1977, 34, 39-51

  • [33] Renard K.G., Freimund J.R., Using monthly precipitation data to estimate the R-factor in the revised USLE, J. Hydrol., 1994, 157, 287-306

  • [34] COST Action 869, Mitigation Options for Nutrient Reduction in Surface Water and Groundwaters, 164th CSO Meeting 29-30 March 2006, Proposal for a new COST Action, European Cooperation in Science and Technology, Brussels, 2006

  • [35] Voges J., Empirisches Modell für die mittlere Maßstabsebene zur GIS-gestützten Bestimmung der Anbindung erosionsgefährdeter Ackerflächen an Fließgewässer, Dissertation, University of Hannover, 1999, (in German)

  • [36] Veith T.L., Agricultural BMP placement for cost-effective pollution control at the watershed level, Virginia Polytechnic Institute and State University, 2002

  • [37] Halbfaß S., 2005, Entwicklung eines GIS-gestützten Modells zur Quantifizierung diffuser Phosphoreinträge in Oberflächengewässer im mittleren Massstab unter Berücksichtigung geoökologisch wirksamer Raumstrukturen, Rhombos, Berlin, 2005, (in German)

  • [38] Witkowski E.T.F., Mitchell D.T., Variations in soil Phosphorus in the Fynbos Biome, South Africa, J. Ecol., 1987, 75, 1159-1171

  • [39] Dube E., Chiduza C., Muchaonyerwa P., High biomass yielding winter cover crops can improve phosphorus availability in soil, S. Afr. J. Sci., 2014, 110, 3/4

  • [40] Schmidt C.J.J., Adriaanse F.G., du Preez C.C., Extractable soil phosphorus threshold values for dryland maize on the South African Highveld, South Afr. J. Plant Soil, 2007, 24/1, 37-46

  • [41] Auerswald, K., Predicting nutrient enrichment from long term average soil loss, Soil Techn., 1989, 2, 271-277

  • [42] Ghadiri H., Rose C.W., Soil processes and chemical transport. Sorbed chemical transport in overland flow, 1. A nutrient and pesticide enrichment mechanism, J. Environ. Qual., 1991, 20, 628-633

  • [43] Ghadiri H., Rose C.W., Soil processes and chemical transport. Sorbed chemical transport in overland flow, 2. Enrichment ratio variation with erosion process, J. Environ. Qual., 1991, 20, 634-641

  • [44] Wendland F., Kunkel R., Grimvall A., Kronvang B., Müller- Wohlfeil D., Model system for the management of nitrogen leaching at the scale of river basins and regions, Water Sci. Technol., 2001, 43/7, 215-222

  • [45] UBA, Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded, Coordination Center for Effects and the Secretariat of the United Nations Economic Commission for Europe, UBA-Texte 71/96, Berlin, 1996

  • [46] Naudé A., Badenhorst W., Zietsman L., Van Huyssteen E., Maritz J., Geospatial Analysis Platform - Version 2: Technical overview of the mesoframe methodology and South African Geospatial Analysis Platform, CSIR Report number: CSIR/BE/ PSS/IR/2007/0104/B, 2007

  • [47] Jedele K., Lüder M., Soldner M., Ermittlung von Stofffrachten aus Abwassereinleitungen in Oberflächengewässer (punktuelle Einträge), Studie der Dr.- Ing. Jedele und Partner GmbH Verfahrenstechnik Wasser Abwasser Schlammim im Auftrag des Thüringer Ministeriums für Landwirtschaft, Naturschutz und Umwelt, Erfurt, 2007, (in German)

  • [48] Nash J.E., Sutcliffe J.V., River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., 1970, 10/3, 282-290

  • [49] DWA, Hydrological Services - Surface Water (Data, Dams, Floods and Flows), Department Water and Sanitation, Republic of South Africa, 2014, https://www.dwaf.gov.za/Hydrology/

  • [50] Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Am. Soc. Agri. Biol. Eng., 2007, 50/3, 885-900.

  • [51] Msadala V., Gibson L., Le Roux J., Rooseboom A., Basson G.R., Sediment Yield Prediction for South Africa: 2010 Edition, Report to the WATER RESEARCH COMMISSION by Stellenbosch University & ARC, WRC Report No. 1765/1/10, ISBN 978-1-4312-0042-9, 2010

  • [52] DWA, National Water Management System data extracted on [2016-03-16] Department of Water and Sanitation, Pretoria, 2016

  • [53] Haskins C., False Bay Ecology Park Water Quality Report, TCT Planning Department Stormwater & Sustainability, 2014, http://www.zeekoevlei.co.za/wp-content/uploads/2014/06/FBEP-WQ-Report_23-April-2014.pdf

OPEN ACCESS

Journal + Issues

CASES is focused on highly inter and trans disciplinary research and addresses case studies, methodologies, statements and experiences that tell lessons learnt from how complex land systems evolve, react, should be developed or can be researched. The journal welcomes full research papers, discussions, reviews and short notes that advance land system science, both success and non-success stories.

Search