The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population

Ulf Nyman 1 , Anders Grubb 2 , Anders Larsson 3 , Lars-Olof Hansson 3 , Mats Flodin 3 , Gunnar Nordin 4 , Veronica Lindström 2 ,  and Jonas Björk
  • 1 Department of Diagnostic Radiology, Lund University, Lasarettet Trelleborg, 231 52 Trelleborg, Sweden
  • 2 Department of Clinical Chemistry, Skåne University Hospital, Lund, Sweden
  • 3 Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
  • 4 Equalis, Uppsala, Sweden
  • 5 R&D Centre Skåne, Skåne University Hospital, Lund, Sweden
  • 6 Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden
Ulf Nyman, Anders Grubb, Anders Larsson, Lars-Olof Hansson, Mats Flodin, Gunnar Nordin, Veronica Lindström and Jonas Björk

Abstract

Background: The performance of creatinine-based glomerular filtration rate (GFR) estimating equations may vary in subgroups defined by GFR, age and body mass index (BMI). This study compares the performance of the Modification of Diet in Renal Disease (MDRD) study and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations with the revised Lund-Malmö equation (LM Revised), a new equation that can be expected to handle changes in GFR across the life span more accurately.

Methods: The study included 3495 examinations in 2847 adult Swedish patients referred for measurement of GFR (mGFR) 2008–2010 by plasma clearance of iohexol (median 52 mL/min/1.73 m2). Bias, precision [interquartile range (IQR)] and accuracy [percentage of estimates ±10% (P10) and ±30% (P30) of mGFR] were compared.

Results: The overall results of LM Revised/MDRD/CKD-EPI were: median bias 2%/8%/11%, IQR 12/14/14 mL/min/1.73 m2, P10 40%/35%/35% and P30 84%/75%/76%. LM Revised was the most stable equation in terms of bias, precision and accuracy across mGFR, age and BMI intervals irrespective of gender. MDRD and CKD-EPI overestimated mGFR in patients with decreased kidney function, young adults and elderly. All three equations overestimated mGFR and had low accuracy in patients with BMI <20 kg/m2, most pronounced among men.

Conclusions: In settings similar to the investigated cohort LM Revised should be preferred to MDRD and CKD-EPI due to its higher accuracy and more stable performance across GFR, age and BMI intervals.

    • Supplemental_Data
  • 1.

    KDIGO. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1–150.

  • 2.

    Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108:2154–69.

    • Crossref
  • 3.

    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247–54.

    • Crossref
  • 4.

    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12.

    • Crossref
  • 5.

    Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 2006;17:2937–44.

    • Crossref
    • PubMed
  • 6.

    Emara M, Zahran A, Abd El, Hady H, Shoker A. How to best define patients with moderate chronic kidney disease. Nephron Clin Pract 2008;110:c195–206.

    • Crossref
  • 7.

    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009;53:982–92.

    • Crossref
  • 8.

    Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E, et al. Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 2011;79:555–62.

    • Crossref
    • PubMed
  • 9.

    Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 2010;56:32–8.

    • PubMed
  • 10.

    Nyman U, Grubb A, Sterner G, Björk J. The CKD-EPI and MDRD equations to estimate GFR. Validation in the Swedish Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71: 129–38.

    • Crossref
  • 11.

    Segarra A, de la Torre J, Ramos N, Quiroz A, Garjau M, Torres I, et al. Assessing glomerular filtration rate in hospitalized patients: a comparison between CKD-EPI and four cystatin C-based equations. Clin J Am Soc Nephrol 2011;6:2411–20.

    • Crossref
  • 12.

    Björk J, Jones I, Nyman U, Sjöström P. Validation of the Lund-Malmö, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol 2012;46:212–22.

    • Crossref
  • 13.

    Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012;156:785–95.

    • Crossref
  • 14.

    Horio M, Yasuda Y, Imai E. Ethnic factors of the glomerular filtration rate estimating equation. Kidney Int 2012;81:799; author reply 800.

    • Crossref
    • PubMed
  • 15.

    Kwong YT, Stevens LA, Selvin E, Zhang YL, Greene T, Van Lente F, et al. Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am J Kidney Dis 2010;56:39–49.

    • Crossref
    • PubMed
  • 16.

    Stevens LA, Manzi J, Levey AS, Chen J, Deysher AE, Greene T, et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 2007;50:21–35.

    • Crossref
  • 17.

    Nyman U, Björk J, Lindström V, Grubb A. The Lund-Malmö creatinine-based glomerular filtration rate prediction equation for adults also performs well in children. Scand J Clin Lab Invest 2008;68:568–76.

    • Crossref
  • 18.

    SBU. Swedish Council on Health Technology Assessment (Statens Beredning för Medicinsk Utvärdering). Estimation of renal function (Skattning av njurfunktion) 2013; Report 214. Available from: http://www.sbu.se/214. Accessed on 25 October, 2013.

  • 19.

    Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 2010;48:1619–21.

    • Crossref
  • 20.

    Bäck SE, Krutzen E, Nilsson-Ehle P. Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents. Scand J Clin Lab Invest 1988;48:247–53.

    • Crossref
  • 21.

    Bird NJ, Peters C, Michell AR, Peters AM. Comparison of GFR measurements assessed from single versus multiple samples. Am J Kidney Dis 2009;54:278–88.

    • Crossref
  • 22.

    Nilsson-Ehle P. Iohexol clearance for the determination of glomerular filtration rate: 15 years’ experience in clinical practice. eJIFCC 2002;13. Available from: http://www.ifcc.org/ifccfiles/docs/130201005.pdf. Accessed on 25 October, 2013.

  • 23.

    Sterner G, Frennby B, Hultberg B, Almen T. Iohexol clearance for GFR-determination in renal failure – single or multiple plasma sampling? Nephrol Dial Transplant 1996;11:521–5.

    • Crossref
    • PubMed
  • 24.

    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.

    • Crossref
  • 25.

    Krutzen E, Back SE, Nilsson-Ehle I, Nilsson-Ehle P. Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med 1984;104:955–61.

    • PubMed
  • 26.

    Jacobsson L. A method for the calculation of renal clearance based on a single plasma sample. Clin Physiol 1983;3:297–305.

    • Crossref
    • PubMed
  • 27.

    DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863–71.

    • Crossref
  • 28.

    Stevens LA, Zhang Y, Schmid CH. Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol 2008;21:797–807.

  • 29.

    Spinler SA, Nawarskas JJ, Boyce EG, Connors JE, Charland SL, Goldfarb S. Predictive performance of ten equations for estimating creatinine clearance in cardiac patients. Iohexol Cooperative Study Group. Ann Pharmacother 1998;32:1275–83.

    • Crossref
  • 30.

    K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Am J Kidney Dis 2002;39:S76–110.

    • Crossref
  • 31.

    Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman and Hall, 1993.

    • Crossref
  • 32.

    Delanaye P, Cavalier E. Staging chronic kidney disease and estimating glomerular filtration rate: an opinion paper about the new international recommendations. Clin Chem Lab Med 2013;51:1911–7.

    • Crossref
    • PubMed
  • 33.

    Evans M, van Stralen KJ, Schon S, Prutz KG, Stendahl M, Rippe B, et al. Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol Dial Transplant 2013;28:2518–26.

    • Crossref
    • PubMed
  • 34.

    Björk J, Grubb A, Sterner G, Nyman U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71:232–9.

    • Crossref
  • 35.

    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012;157: 471–81.

    • Crossref
  • 36.

    Koppe L, Klich A, Dubourg L, Ecochard R, Hadj-Aissa A. Performance of creatinine-based equations compared in older patients. J Nephrol 2013;26:716–23.

    • Crossref
  • 37.

    Flamant M, Haymann JP, Vidal-Petiot E, Letavernier E, Clerici C, Boffa JJ, et al. GFR estimation using the Cockcroft-Gault, MDRD study, and CKD-EPI equations in the elderly. Am J Kidney Dis 2012;60:847–9.

    • Crossref
    • PubMed
  • 38.

    Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin J Am Soc Nephrol 2011;6:1963–72.

    • Crossref
  • 39.

    Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 2007;18:2749–57.

    • Crossref
  • 40.

    Björk J, Bäck SE, Sterner G, Carlson J, Lindström V, Bakoush O, et al. Prediction of relative glomerular filtration rate in adults: new improved equations based on Swedish Caucasians and standardized plasma-creatinine assays. Scand J Clin Lab Invest 2007;67:678–95.

    • Crossref
  • 41.

    Bouquegneau A, Vidal-Petiot E, Vrtovsnik F, Cavalier E, Rorive M, Krzesinski JM, et al. Modification of diet in renal disease versus chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol Dial Transplant 2013;28(Suppl 4):iv122–30.

    • Crossref
  • 42.

    Eriksen BO, Melsom T, Mathisen UD, Jenssen TG, Solbu MD, Toft I. GFR normalized to total body water allows comparisons across genders and body sizes. J Am Soc Nephrol 2011;22: 1517–25.

    • Crossref
    • PubMed
  • 43.

    Nyman U, Grubb A, Sterner G, Björk J. Different equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinations. Scand J Clin Lab Invest 2009;69:619–27.

    • Crossref
  • 44.

    Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 2008;51: 395–406.

    • Crossref
  • 45.

    Tidman M, Sjöström P, Jones I. A Comparison of GFR estimating formulae based upon s-cystatin C and s-creatinine and a combination of the two. Nephrol Dial Transplant 2008; 23:154–60.

    • Crossref
  • 46.

    Granerus G, Jacobsson L. Calculation of 51-Cr-EDTA single injection clearance. Comparison between a single sample and multiple sample formula. Swedish Soc Radiol Proc 1985;19:71–3.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Clinical Chemistry and Laboratory Medicine ( CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor of over three. CCLM is the official journal of nine national clinical societies and associated with EFLM.

Search