HAND1 loss-of-function mutation associated with familial dilated cardiomyopathy

Yi-Meng Zhou, Xiao-Yong Dai, Xing-Biao Qiu 2 , Fang Yuan 2 , Ruo-Gu Li 2 , Ying-Jia Xu 2 , Xin-Kai Qu 2 , Ri-Tai Huang 3 , Song Xue 3 , and Yi-Qing Yang 2
  • 1 Department of Emergency Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P.R. China
  • 2 Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
  • 3 Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
Yi-Meng Zhou, Xiao-Yong Dai, Xing-Biao Qiu, Fang Yuan, Ruo-Gu Li, Ying-Jia Xu, Xin-Kai Qu, Ri-Tai Huang, Song Xue and Yi-Qing Yang

Abstract

Background: The basic helix-loop-helix transcription factor HAND1 is essential for cardiac development and structural remodeling, and mutations in HAND1 have been causally linked to various congenital heart diseases. However, whether genetically compromised HAND1 predisposes to dilated cardiomyopathy (DCM) in humans remains unknown.

Methods: The whole coding region and splicing junctions of the HAND1 gene were sequenced in 140 unrelated patients with idiopathic DCM. The available family members of the index patient carrying an identified mutation and 260 unrelated ethnically matched healthy individuals used as controls were genotyped for HAND1. The functional effect of the mutant HAND1 was characterized in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system.

Results: A novel heterozygous HAND1 mutation, p.R105X, was identified in a family with DCM transmitted as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. The nonsense mutation was absent in 520 control chromosomes. Functional analyses unveiled that the mutant HAND1 had no transcriptional activity. Furthermore, the mutation abolished the synergistic activation between HAND1 and GATA4, another crucial cardiac transcription factors that has been associated with various congenital cardiovascular malformations and DCM.

Conclusions: This study firstly reports the association of HAND1 loss-of-function mutation with increased susceptibility to DCM in humans, which provides novel insight into the molecular mechanisms underpinning DCM.

  • 1.

    Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 2013;10:531–47.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Lakdawala NK, Winterfield JR, Funke BH. Dilated cardiomyopathy. Circ Arrhythm Electrophysiol 2013;6:228–37.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest 2013;123:19–26.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Arndt AK, Schafer S, Drenckhahn JD, Sabeh MK, Plovie ER, Caliebe A, et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am J Hum Genet 2013;93:67–77.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Dhandapany PS, Razzaque MA, Muthusami U, Kunnoth S, Edwards JJ, Mulero-Navarro S, et al. RAF1 mutations in childhood-onset dilated cardiomyopathy. Nat Genet 2014;46:635–9.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J Hum Genet 2014;95:218–26.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Reinstein E, Orvin K, Tayeb-Fligelman E, Stiebel-Kalish H, Tzur S, Pimienta AL, et al. Mutations in TAX1BP3 cause dilated cardiomyopathy with septo-optic dysplasia. Hum Mutat 2015;36:439–42.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Liaquat A, Shauket U, Ahmad W, Javed Q. The tumor necrosis factor-α-238G/A and IL-6 -572G/C gene polymorphisms and the risk of idiopathic dilated cardiomyopathy: a meta-analysis of 25 studies including 9493 cases and 13,971 controls. Clin Chem Lab Med 2015;53:307–18.

  • 9.

    Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 2015;36:1123–35a.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Akazawa H, Komuro I. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol Ther 2005;107:252–68.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Pikkarainen S, Tokola H, Kerkelä R, Ruskoaho H. GATA transcription factors in the developing and adult heart. Cardiovasc Res 2004;63:196–207.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Greulich F, Rudat C, Kispert A. Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 2011;91:212–22.

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Srivastava D. HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med 1999;9:11–8.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 2007;18:117–31.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, et al. Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol 2003;262:206–24.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Linhares VL, Almeida NA, Menezes DC, Elliott DA, Lai D, Beyer EC, et al. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc Res 2004;64:402–11.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, et al. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol 2014;114:1891–5.

    • Crossref
    • PubMed
    • Export Citation
  • 18.

    Zhao L, Ni SH, Liu XY, Wei D, Yuan F, Xu L, et al. Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. Eur J Med Genet 2014;57:579–86.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, et al. GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum Mutat 2013;34:1662–71.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, et al. GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med 2014;33:1219–26.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Huang RT, Xue S, Xu YJ, Yang YQ. Somatic mutations in the GATA6 gene underlie sporadic tetralogy of Fallot. Int J Mol Med 2013;31:51–8.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Xu YJ, Chen S, Zhang J, Fang SH, Guo QQ, Wang J, et al. Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion. BMC Med Genet 2014;15:78.

    • Crossref
    • PubMed
    • Export Citation
  • 23.

    Baban A, Postma AV, Marini M, Trocchio G, Santilli A, Pelegrini M, et al. Identification of TBX5 mutations in a series of 94 patients with tetralogy of Fallot. Am J Med Genet A 2014;164:3100–7.

    • Crossref
    • Export Citation
  • 24.

    Pan Y, Geng R, Zhou N, Zheng GF, Zhao H, Wang J, et al. TBX20 loss-of-function mutation contributes to double outlet right ventricle. Int J Mol Med 2015;35:1058–66.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Reamon-Buettner SM, Ciribilli Y, Inga A, Borlak J. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet 2008;17:1397–405.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 2012;100:253–77.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Costa MW, Guo G, Wolstein O, Vale M, Castro ML, Wang L, et al. Functional characterization of a novel mutation in NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circ Cardiovasc Genet 2013;6:238–47.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu YJ, et al. A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int J Mol Med 2015;35:478–86.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X, et al. GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochem Biophys Res Commun 2013;439:591–6.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    Li J, Liu WD, Yang ZL, Yuan F, Xu L, Li RG, et al. Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene 2014;548:174–81.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng HZ, et al. A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. Int J Mol Med 2014;33:654–60.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, et al. GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med 2015;35:763–70.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, et al. GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med 2014;34:1315–22.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM, Li RG, et al. TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun 2015;459:166–71.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Zhou W, Zhao L, Jiang JQ, Jiang WF, Yang YQ, Qiu XB. A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int J Mol Med 2015;36:282–8.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 2007;81:280–91.

    • Crossref
    • PubMed
    • Export Citation
  • 37.

    Zhao CM, Sun B, Song HM, Wang J, Xu WJ, Jiang JF, et al. TBX20 loss-of-function mutation associated with familial dilated cardiomyopathy. Clin Chem Lab Med 2016;54:325–32.

    • PubMed
    • Export Citation
  • 38.

    Elliott P, O’Mahony C, Syrris P, Evans A, Rivera Sorensen C, Sheppard MN, et al. Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ Cardiovasc Genet 2010;3:314–22.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Wei D, Bao H, Zhou N, Zheng GF, Liu XY, Yang YQ. GATA5 loss-of-function mutation responsible for the congenital ventriculoseptal defect. Pediatr Cardiol 2013;34:504–11.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Morin S, Pozzulo G, Robitaille L, Cross J, Nemer M. MEF2-dependent recruitment of the HAND1 transcription factor results in synergistic activation of target promoters. J Biol Chem 2005;16:32272–8.

  • 41.

    Thattaliyath BD, Livi CB, Steinhelper ME, Toney GM, Firulli AB. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy. Biochem Biophys Res Commun 2002;297:870–75.

    • Crossref
    • PubMed
    • Export Citation
  • 42.

    Knöfler M, Meinhardt G, Vasicek R, Husslein P, Egarter C. Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart. Gene 1998;224:77–86.

    • Crossref
    • PubMed
    • Export Citation
  • 43.

    McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 2005;132:189–201.

  • 44.

    Risebro CA, Smart N, Dupays L, Breckenridge R, Mohun TJ, Riley PR. Hand1 regulates cardiomyocyte proliferation versus differentiation in the developing heart. Development 2006;133:4595–606.

    • Crossref
    • PubMed
    • Export Citation
  • 45.

    Breckenridge RA, Zuberi Z, Gomes J, Orford R, Dupays L, Felkin LE, et al. Overexpression of the transcription factor Hand1 causes predisposition towards arrhythmia in mice. J Mol Cell Cardiol 2009;47:133–41.

    • Crossref
    • PubMed
    • Export Citation
  • 46.

    Riley P, Anson-Cartwright L, Cross JC. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet 1998;18:271–5.

    • Crossref
    • PubMed
    • Export Citation
  • 47.

    Reamon-Buettner SM, Ciribilli Y, Traverso I, Kuhls B, Inga A, Borlak J. A functional genetic study identifies HAND1 mutations in septation defects of the human heart. Hum Mol Genet 2009;18:3567–78.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search