A robust algorithm for optic disc segmentation and fovea detection in retinal fundus images

  • 1 Institute of Mathematics and Image Computing, Ratzeburger Allee 160, 23562 Lübeck, Germany
  • 2 Fraunhofer Institute for Medical Image Computing MEVIS, Maria-Goeppert-Straße 3, 23562 Lübeck, Germany


Accurate optic disc (OD) segmentation and fovea detection in retinal fundus images are crucial for diagnosis in ophthalmology. We propose a robust and broadly applicable algorithm for automated, robust, reliable and consistent fovea detection based on OD segmentation. The OD segmentation is performed with morphological operations and Fuzzy C Means Clustering combined with iterative thresholding on a foreground segmentation. The fovea detection is based on a vessel segmentation via morphological operations and uses the resulting OD segmentation to determine multiple regions of interest. The fovea is determined from the largest, vessel-free candidate region. We have tested the novel method on a total of 190 images from three publicly available databases DRIONS, Drive and HRF. Compared to results of two human experts for DRIONS database, our OD segmentation yielded a dice coefficient of 0.83. Note that missing ground truth and expert variability is an issue. The new scheme achieved an overall success rate of 99.44% for OD detection and an overall success rate of 96.25% for fovea detection, which is superior to state-of-the-art approaches.

If the inline PDF is not rendering correctly, you can download the PDF file here.


Journal + Issues

Current Directions in Biomedical Engineering is an open access journal and closely related to the journal Biomedical Engineering - Biomedizinische Technik. CDBME is a forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering for medicine and addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.