Novel 3D printing concept for the fabrication of time-controlled drug delivery systems

  • 1 Fluid Technology and Microfluidics, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
  • 2 Fluid Technology and Microfluidics, University of Rostock, Justus-von- Liebig-Weg 6, 18059, Rostock, Germany
  • 3 Institute for Biomedical Engineering, University Medical Center Rostock,, Rostock, Germany


Three-dimensional (3D) printing has become a popular technique in many areas. One emerging field is the use of 3D printing for the development of 3D drug delivery systems (DDS) and drug-loaded medical devices. This article describes a novel concept for the fabrication of timecontrolled drug delivery systems based on stereolithography combined with inkjet printing. An inkjet printhead and an UV-LED light source have been integrated into an existing stereolithography system. Inkjet printing is used to selectively incorporate active pharmaceutical ingredients (API) during a stereolithographic 3D printing process. In an initial experimental study, poly (ethylene glycol) diacrylate (PEGDA) was used as polymer whereas 2-Hydroxy-4´-(2- hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) and Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) were used as photoinitiators. Basic structures could be manufactured successfully by the new hybrid 3D printing system.

If the inline PDF is not rendering correctly, you can download the PDF file here.


Journal + Issues

Current Directions in Biomedical Engineering is an open access journal and closely related to the journal Biomedical Engineering - Biomedizinische Technik. CDBME is a forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering for medicine and addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.