Spectrophotometric studies of the reaction of quercetin with peroxynitrite at different pH

Lidia Gebicka 1  and Katarzyna Stawowska 1
  • 1 Technical University of Łodz

Abstract

Peroxynitrite (ONOOH/ONOO-) which is formed in vivo under oxidative stress is a strong oxidizing and nitrating agent. It has been reported that several flavonoids, including quercetin, inhibit the peroxynitrite-induced oxidation and/or nitration of several molecules tested; however, the mechanism of their protective action against peroxynitrite is not univocally resolved. The kinetics of the reaction of quercetin with peroxynitrite was studied by stopped-flow as well as by conventional spectrophotometry under acidic, neutral and alkaline pH. The obtained results show that the protective mechanism of quercetin against peroxynitrite toxicity cannot be explained by direct scavenging of peroxynitrite. We propose that quercetin acts via scavenging intermediate radical products of peroxynitrite decomposition (it is an excellent scavenger of ·NO2) and/or via reduction of target radicals formed in the reaction with peroxynitrite.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] W.H. Koppenol, R. Kissner, Chem. Res. Toxicol. 11, 87 (1998) http://dx.doi.org/10.1021/tx970200x

  • [2] O.V. Gerasimov, S.V. Lymar, Inorg. Chem. 38, 4317 (1999) http://dx.doi.org/10.1021/ic990384y

  • [3] G.R. Hodges, K.U. Ingold, J. Am. Chem. Soc. 121, 10695 (1999) http://dx.doi.org/10.1021/ja991077u

  • [4] P. Pacher, J.S. Beckman, L. Liaudet, Physiol. Rev. 87, 315 (2007) http://dx.doi.org/10.1152/physrev.00029.2006

  • [5] G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 4, 161 (2009) http://dx.doi.org/10.1021/cb800279q

  • [6] S.V. Lymar, J.K. Hurst, J. Am. Chem. Soc. 117, 8867 (1995) http://dx.doi.org/10.1021/ja00139a027

  • [7] O. Augusto, M.G. Bonini, A.M. Amanso, E. Linares, C.C.X. Santos, S.L. de Menezes, Free Radic. Biol. Med. 32, 841 (2002) http://dx.doi.org/10.1016/S0891-5849(02)00786-4

  • [8] K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, J. Nutr. Biochem. 13, 572 (2002) http://dx.doi.org/10.1016/S0955-2863(02)00208-5

  • [9] M. Trujillo, G. Ferrer-Sueta, R. Radi, Antiox. Redox. Sign. 10, 1 (2008) http://dx.doi.org/10.1089/ars.2007.1705

  • [10] G.E. Arteel, P. Schroeder, H. Sies, J. Nutr. 130, 2100S (2000)

  • [11] P. Schroeder, H. Zhang, L-O. Klotz, B. Kalyanaraman, H. Sies, Biochim. Biophys. Res. Commun. 289, 1334 (2001) http://dx.doi.org/10.1006/bbrc.2001.6134

  • [12] Y. Kono, K. Kobayashi, S. Tagawa, K. Adachi, A. Ueda, Y. Sawa, H. Shibata, Biochim. Biophys. Acta 1335, 335 (1997) http://dx.doi.org/10.1016/S0304-4165(96)00151-1

  • [13] G.R.M.M. Haenen, J.B.G. Paquay, R.E.M. Korthouwer, A. Bast, Biochem. Biophys. Res. Commun. 236, 591 (1997) http://dx.doi.org/10.1006/bbrc.1997.7016

  • [14] J.S. Choi, H.Y. Chung, S.S. Kang, M.J. Jung, J.W. Kim, J.K. No, H.A. Jung, Phytother. Res. 16, 232 (2002) http://dx.doi.org/10.1002/ptr.828

  • [15] M.R. Santos, L. Mira, Free Rad. Res. 38, 1011 (2004) http://dx.doi.org/10.1080/10715760400003384

  • [16] M. Sadeghipour, R. Terreux, J. Phipps, Toxicol. in Vitro 19, 155 (2005) http://dx.doi.org/10.1016/j.tiv.2004.06.009

  • [17] X. Chen, D.U. Ahn, J. Am. Oil Chem. Soc. 75, 1717 (1998) http://dx.doi.org/10.1007/s11746-998-0322-2

  • [18] J.S. Beckman, J. Chen, H. Ischiropoulos, J.P. Crow, Methods Enzymol. 233, 229 (1994) http://dx.doi.org/10.1016/S0076-6879(94)33026-3

  • [19] M.N. Huges, H.G. Nicklin, J. Chem. Soc. 450 (1968)

  • [20] O. Dangles, C. Dufour, S. Bret, J. Chem. Soc. PerkinTrans 2, 737 (1999) http://dx.doi.org/10.1039/a810017i

  • [21] D. Metodiewa, A.K. Jaiswal, N. Cenas, E. Dickancaite, J. Segura-Aguilar, Free Radic. Biol. Med. 26, 107 (1999) http://dx.doi.org/10.1016/S0891-5849(98)00167-1

  • [22] A. Zhou, O.A. Sadik, J. Agric. Food Chem. 56, 12081 (2008) http://dx.doi.org/10.1021/jf802413v

  • [23] J.M. Herrero-Martinez, M. Sanmartin, M. Roses, E. Bosch, C. Rafols, Electrophoresis 26, 1886 (2005) http://dx.doi.org/10.1002/elps.200410258

  • [24] U. Takahama, T. Oniki, S. Sirota, J. Agric. Food Chem. 50, 4317 (2002) http://dx.doi.org/10.1021/jf011697q

  • [25] S. Hirota, U. Takahama, T.N. Ly, R. Yamauchi, J. Agric. Food Chem. 53, 3265 (2005) http://dx.doi.org/10.1021/jf0404389

  • [26] H.M. Awad, M.G. Boersma, J. Vervoort, I.M.C.M. Rietjens, Arch. Biochem. Biophys. 32, 224 (2000) http://dx.doi.org/10.1006/abbi.2000.1832

  • [27] R. Kissner, T. Nauser, C. Kurz, W.H. Koppenol, IUMBM Life 55, 567 (2003) http://dx.doi.org/10.1080/15216540310001628690

  • [28] R.K. Broszkiewicz, Bull. Acad. Sci. Sedr. Sci. Chim. 24, 221 (1976)

  • [29] S.E. Schwartz, W.H. White, Adv. Environ. Sci. Technol. 12, 1 (1983)

  • [30] S. Goldstein, J. Lind, G. Merenyi, Chem. Rev. 105, 2457 (2005) http://dx.doi.org/10.1021/cr0307087

  • [31] A. Torreggiani, A. Trinchero, M. Tamba, P. Taddei, J. Raman Spectrosc. 36, 380 (2005) http://dx.doi.org/10.1002/jrs.1300

  • [32] C.Y. Zhao, Y.M. Shi, S.D. Yao, Z.J. Jia, B.T. Fan, W.F. Wang, W.Z. Lin, N.Y. Lin, R.L. Zheng, Pharmazie 58, 742 (2003)

  • [33] W. Bors, C. Michel, S. Schikora, Free Rad. Biol.Med. 19, 45 (1995) http://dx.doi.org/10.1016/0891-5849(95)00011-L

  • [34] L-M. Lin, H-Y. Wu, W-S. Li, W-L. Chen, Y-J. Lee, D.C. Wu, P. Li, A. Yeh, Inorg. Chem. Commun. 13, 633 (2010) http://dx.doi.org/10.1016/j.inoche.2010.03.006

  • [35] S.K. Nicholson, G.A. Tucker, J.M. Brameld, Br. J. Nutr. 103, 1398 (2010) http://dx.doi.org/10.1017/S0007114509993485

  • [36] J. Glebska, W.H. Koppenol, Free Rad. Biol. Med. 35, 676 (2003) http://dx.doi.org/10.1016/S0891-5849(03)00389-7

  • [37] M. Wrona, K. Patel, P. Wardman, Free Rad. Biol. Med. 38, 262 (2005) http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.022

  • [38] L.K. Folkes, K.B. Patel, P. Wardman, M. Wrona, Arch. Biochem. Biophys. 484, 122 (2009) http://dx.doi.org/10.1016/j.abb.2008.10.014

  • [39] P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988)

  • [40] J.-L. Miao, W.-F. Wang, J.-X. Pan, C.-Y. Liu, R.-Q. Li, S.-D. Yao, Radiat. Phys. Chem. 60, 163 (2001) http://dx.doi.org/10.1016/S0969-806X(00)00387-X

  • [41] W. Bors, C. Michel, M. Saran, Methods Enzymol. 234, 420 (1994) http://dx.doi.org/10.1016/0076-6879(94)34112-5

  • [42] S. Herold, M. Exner, F. Boccini, Chem. Res. Toxicol. 16, 390 (2003) http://dx.doi.org/10.1021/tx025595l

  • [43] U. Ketsawatsakul, M. Whiteman, B. Halliwell, Biochem. Biophys. Res. Commun. 279, 692 (2000) http://dx.doi.org/10.1006/bbrc.2000.4014

OPEN ACCESS

Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Search