Exploring the possibility of high-valent copper in models of copper proteins with a three-histidine copper-binding motif

Imre Anamaria 1 , Augustin Mot 1 , and Radu Silaghi-Dumitrescu 1
  • 1 Department of Chemistry, “Babes-Bolyai University, Cluj-Napoca, RO-400028, Romania


An important function of many copper-containing proteins is activation of O2 and subsequent substrate oxidation. The Cu (III) oxidation state is generally considered to be less accessible because of the highly positive Cu (III)/Cu (II) redox potentials with typical amino acid ligands. Here, we employ density functional (DFT) calculations to explore to what extent copper (III) may be accessed in a biologically-relevant coordination environment around a mononuclear copper center, by breaking the oxygen-oxygen bond in a copper-(hydro) peroxide complex. In agreement with previous findings by Solomon and co-workers on copper models with related coordination patterns, the formally high-valent copper complex produced by O-O bond cleavage appears to harbor both oxidizing equivalents on the ligands. The potential energy surface for such a reaction reveals that with the three-histidine binding motif at the copper, O-O bond cleavage is not impossible, but rather disfavored thermodynamically.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Melníka, M. Kabešová, J. Coord. Chem. 50, 323 (2000) http://dx.doi.org/10.1080/00958970008054938

  • [2] T.V. Popova, N.V. Aksenova, Russ. J.Coord. Chem. 29, 743 (2003) http://dx.doi.org/10.1023/B:RUCO.0000003432.39025.cc

  • [3] N.W. Aboelella, S.V. Kryatov, B.F. Gherman, W.W. Brennessel, V.G. Young, Jr., R. Sarangi, E.V. Rybak-Akimova, K.O. Hodgson, B. Hedman, E.I. Solomon, C.J. Cramer, W.B. Tolman, J. Am. Chem. Soc. 126, 16896 (2004) http://dx.doi.org/10.1021/ja045678j

  • [4] N.W. Aboelella, B.F. Gherman, L.M.R. Hill, J.T. York, N. Holm, V.G. Young Jr., C.J. Cramer, W.B. Tolman, J. Am. Chem. Soc. 128, 3445 (2006) http://dx.doi.org/10.1021/ja057745v

  • [5] W. Buijs, P. Comba, D. Corneli, H. Pritzkow, J. Organomet. Chem. 641, 71 (2002) http://dx.doi.org/10.1016/S0022-328X(01)01291-8

  • [6] P. Comba, S. Knoppe, B. Martin, G. Rajaraman, C. Rolli, B. Shapiro, T. Stork, Chem. Eur. J. 14, 344 (2008) http://dx.doi.org/10.1002/chem.200700865

  • [7] K. Yoshizawa, N. Kihara, T. Kamachi, Y. Shiota, Inorg. Chem. 45, 3034 (2006) http://dx.doi.org/10.1021/ic0521168

  • [8] T. Kamachi, N. Kihara, Y. Shiota, K. Yoshizawa, Inorg. Chem. 44, 4226 (2005) http://dx.doi.org/10.1021/ic048477p

  • [9] A. Decker, E.I. Solomon, Curr. Opin. Chem. Biol. 9, 152 (2005) http://dx.doi.org/10.1016/j.cbpa.2005.02.012

  • [10] G.A. Hamilton, P.K. Adolf, J. De Jersey, G.C. DuBois, G.R. Dyrkacz, R.D. Libby, J. Am. Chem. Soc. 100, 1899 (1978) http://dx.doi.org/10.1021/ja00474a042

  • [11] K. Clark, J.E. Penner-Hahn, M.M. Whittaker, J.W. Whittaker, J. Am. Chem. Soc. 112, 6433 (1990) http://dx.doi.org/10.1021/ja00173a061

  • [12] R. Silaghi-Dumitrescu, Stud. U. Babes-Bol. Che. 2, 127 (2007)

  • [13] SPARTAN’ 04 for Windows (Wavefunction Inc., Irvine, 2004)

  • [14] R. Silaghi-Dumitrescu, I. Silaghi-Dumitrescu, J. Inorg. Biochem. 100, 161 (2006) http://dx.doi.org/10.1016/j.jinorgbio.2005.10.011


Journal + Issues