Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia

Pavel Coufalík 1 , Pavel Krásenský 1 , Marek Dosbaba 2 , and Josef Komárek 1
  • 1 Department of Chemistry, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
  • 2 GEOMIN cooperative, Jihlava, 586 56, Czech Republic

Abstract

Mercury forms in contaminated environmental samples were studied by means of sequential extraction and thermal desorption from the solid phase. The sequential extraction procedure involved the following fractions: water soluble mercury, mercury extracted in acidic conditions, mercury bound to humic substances, elemental Hg and mercury bound to complexes, HgS, and residual mercury. In addition to sequential extraction, the distribution of mercury species as a function of soil particles size was studied. The thermal desorption method is based on the thermal decomposition or desorption of Hg compounds at different temperatures. The following four species were observed: Hg0, HgCl2, HgS and Hg(II) bound to humic acids. The Hg release curves from artificial soils and real samples were obtained and their applicability to the speciation analysis was considered.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L.D. Hylander, M. Meili, Sci. Total. Environ. 304, 13 (2003) http://dx.doi.org/10.1016/S0048-9697(02)00553-3

  • [2] A.B. Mukherjee, R. Zevenhoven, J. Brodersen, L.D. Hylander, P. Bhattacharya, Resour. Conserv. Recy. 42, 155 (2004) http://dx.doi.org/10.1016/j.resconrec.2004.02.009

  • [3] K. Schlüter, Environ. Geol. 39, 3 (2000) http://dx.doi.org/10.1007/s002540050005

  • [4] D.W. Boening, Chemosphere 40, 1335 (2000) http://dx.doi.org/10.1016/S0045-6535(99)00283-0

  • [5] X. Feng, G. Qiu, Sci. Total. Environ. 400, 227 (2008) http://dx.doi.org/10.1016/j.scitotenv.2008.05.040

  • [6] L.D. Hylander, M.E. Goodsite, Sci. Total. Environ. 368, 352 (2006) http://dx.doi.org/10.1016/j.scitotenv.2005.11.029

  • [7] N. Bloom, E. Preus, J. Katon, M. Hiltner, Anal. Chim. Acta 479, 233 (2003) http://dx.doi.org/10.1016/S0003-2670(02)01550-7

  • [8] L. Boszke et al., Environ. Geol. 55, 1075 (2008) http://dx.doi.org/10.1007/s00254-007-1056-4

  • [9] R. Fernández-Martínez, M. Rucadio, Anal. Bioanal. Chem. 375, 1089 (2003)

  • [10] F. Han, Y. Su, D. Monts, C. Waggoner, J. Plodinec, Sci. Total. Environ. 368, 753 (2006) http://dx.doi.org/10.1016/j.scitotenv.2006.02.026

  • [11] P. Lechler, J. Miller, L. Hsu, M. Desilets, J. Geochem. Explor. 58, 259 (1997) http://dx.doi.org/10.1016/S0375-6742(96)00071-4

  • [12] A. Renneberg, M. Dudas, Chemosphere 45, 1103 (2001) http://dx.doi.org/10.1016/S0045-6535(01)00122-9

  • [13] A. Das, R. Chakraborty, L. Cervera, M. Guardia, Talanta 42, 1007 (1995) http://dx.doi.org/10.1016/0039-9140(95)01557-R

  • [14] A. Davis, N. Bloom, S. Shane, Q. Hee, Risk Anal. 17(5), 557 (1997) http://dx.doi.org/10.1111/j.1539-6924.1997.tb00897.x

  • [15] N. Issaro, C. Abi-Ghanem, A. Bermond, Anal. Chim. Acta 631, 1 (2009) http://dx.doi.org/10.1016/j.aca.2008.10.020

  • [16] A. Collasiol, D. Pozebon, S. Maia, Anal. Chim. Acta 518, 157 (2004) http://dx.doi.org/10.1016/j.aca.2004.04.021

  • [17] S. Guedron, S. Grangeon, B. Lanson, M. Grimaldi, Geoderma 153, 331 (2009) http://dx.doi.org/10.1016/j.geoderma.2009.08.017

  • [18] N. Revis, T. Osborne, G. Holdsworth, C. Hadden, Water Air Soil Poll. 45, 105 (1989)

  • [19] C. Sladek, M. Gustin, Appl. Geochem. 18, 567 (2003) http://dx.doi.org/10.1016/S0883-2927(02)00115-4

  • [20] S. Díez, J.M. Bayona, Talanta 77, 21 (2008) http://dx.doi.org/10.1016/j.talanta.2008.06.027

  • [21] Y. Han et al., Anal. Bioanal. Chem. 375, 428 (2003)

  • [22] H. Biester, G. Nehrke, Fresen. J. Anal. Chem. 358, 446 (1997) http://dx.doi.org/10.1007/s002160050444

  • [23] H. Biester, M. Gosar, G. Müller, J. Geochem. Explor. 65, 195 (1999) http://dx.doi.org/10.1016/S0375-6742(99)00027-8

  • [24] M. Hojdová, T. Navrátil, J. Rohovec, B. Environ. Contam. Tox. 80, 237 (2008) http://dx.doi.org/10.1007/s00128-007-9352-y

  • [25] A. Navarro, H. Biester, J. Mendoza, E. Cardellach, Environ. Geol. 49, 1089 (2006) http://dx.doi.org/10.1007/s00254-005-0152-6

  • [26] C.M. Valle, G.P. Santana, R. Augusti, F.E. Filho, C.C. Windmöller, Chemosphere 58, 779 (2005) http://dx.doi.org/10.1016/j.chemosphere.2004.09.005

  • [27] H. Biester, Ch. Scholz, Environ. Sci. Technol. 31, 233 (1997) http://dx.doi.org/10.1021/es960369h

  • [28] R. Kucharski et al., Environ. Monit. Assess. 104, 341 (2005) http://dx.doi.org/10.1007/s10661-005-1620-x

  • [29] D. Wallschläger, M. Desai, M. Spengler, C.C. Windmöler, R.D. Wilken, J. Environ. Qual. 27, 5, 1044 (1998) http://dx.doi.org/10.2134/jeq1998.00472425002700050009x

  • [30] T. Chang, J. Yen, J. Hazard. Mater. B128, 208 (2006) http://dx.doi.org/10.1016/j.jhazmat.2005.07.053

  • [31] A. Navarro, I. Cañadas, D. Martinez, J. Rodriguez, J. Mendoza, Sol. Energy 83, 1405 (2009) http://dx.doi.org/10.1016/j.solener.2009.03.013

  • [32] Test No. 207, OECD, France, Paris (1984)

  • [33] P. Coufalík, R. Červenka, J. Komárek, Environ. Earth Sci. 62, 421 (2010) http://dx.doi.org/10.1007/s12665-010-0537-z

OPEN ACCESS

Journal + Issues

Search