Examination of distribution of trace elements in hair, fingernails and toenails as alternative biological materials. Application of chemometric methods

Agnieszka Przybylowicz 1 , Paulina Chesy 1 , Malgorzata Herman 1 , Andrzej Parczewski, Stanislaw Walas 1 , and Wojciech Piekoszewski
  • 1 Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060, Krakow, Poland
  • 2 Institute of Forensic Research, 31-033, Krakow, Poland
  • 3 Laboratory of High Resolution Mass Spectrometry, Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, 30-060, Krakow, Poland

Abstract

The aim of this study was to find correlations between several studied elements and analyzed materials as well as the application and validation of an analytical method to determine trace elements in hair, fingernails and toenails of healthy volunteers (normal concentration). The method developed covers washing, mineralization and ICP-MS determination of 10 elements (Ca, Cd, Co, Cr, Cu, Fe, Mg, Ni, Pb and Zn) in hair and nails. Concentrations of the selected elements in hair, fingernails and toenails were measured for 24 women and 18 men. Furthermore, a chemometric approach (Principal Component Analysis, PCA) was employed to evaluate the correlations between concentrations of the elements in hair and nails and between these materials. Until now PCA has not been frequently applied in handling and interpretation of the results of analysis of biological materials. However, the results of the present investigation show the high potential of PCA in extraction of valuable information from analytical measurements. Additionally, PCA has become a useful tool for visualization of the obtained results. Moreover, the cluster analysis (CA) was used to group the samples according to gender, taking into account two different groups of elements: essential and toxic.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G.F. Nordberg, B.A. Fowler, M. Nordberg, L. Friberg, The handbook on the toxicology of metals, 3rd edition (Elsevier, New York, 2007)

  • [2] A. Fairbrother, R. Wenstel, K. Sappington, W. Wood, Ecotox. Environ. Safe 68, 145 (2007) http://dx.doi.org/10.1016/j.ecoenv.2007.03.015

  • [3] A. Galanis, A. Karapetsas, R. Sandaltzopoulos, Mutat. Res. 674, 31 (2009) http://dx.doi.org/10.1016/j.mrgentox.2008.10.008

  • [4] A.D. Dayan, A.J. Paine, Hum. Exp. Toxicol. 20, 439 (2001) http://dx.doi.org/10.1191/096032701682693062

  • [5] F. Chen, V. Vallyathan, V. Castranova, X. Shi, Mol. Cell Biochem. 222, 183 (2001) http://dx.doi.org/10.1023/A:1017970330982

  • [6] H. Lu, X. Shi, M. Costa, C. Huang, Mol. Cell Biochem. 279, 45 (2005) http://dx.doi.org/10.1007/s11010-005-8215-2

  • [7] P. Joseph, Toxicol. Appl. Pharmacol. 238, 272 (2009) http://dx.doi.org/10.1016/j.taap.2009.01.011

  • [8] S.V.S. Rana, J. Trace Elem. Med. Biol. 22, 262 (2008) http://dx.doi.org/10.1016/j.jtemb.2008.08.002

  • [9] H.I. Afridi, T.G. Kazi, N.G. Kazi, M.K. Jamali, M.B. Arain, Sirajuddin, J.A. Baig, G.A. Kandhro, S.K. Wadhwa, A.Q. Shah, J. Hum. Hypertens. 24, 34 (2010) http://dx.doi.org/10.1038/jhh.2009.39

  • [10] D.S. Bae, C. Gennings, W.H. Carter, R.S.H. Yang, J.A. Campain, Toxicol. Sci. 63, 132 (2001) http://dx.doi.org/10.1093/toxsci/63.1.132

  • [11] H. Chen, M. Costa, Exp. Biol. Med. (Maywood) 231, 1474 (2006)

  • [12] A. Bazzi, J.O. Nriagu, A.M. Linder, J. Environ. Monit. 10, 1226 (2008) http://dx.doi.org/10.1039/b809465a

  • [13] A. Hanc, I. Komorowicz, M. Iskra, W. Majewski, D. Barałkiewicz, Anal Bioanal Chem. 399, 3221 (2011) http://dx.doi.org/10.1007/s00216-011-4729-5

  • [14] A. Unkiewicz-Winiarczyk, K. Gromysz-Ka’kowska, E. Szubertowska, Biol. Trace Elem. Res. 132, 41 (2009) http://dx.doi.org/10.1007/s12011-009-8390-1

  • [15] F.H. Were, W. Njue, J. Murungi, R. Wanjau, Sci. Total Environ. 393, 376 (2008) http://dx.doi.org/10.1016/j.scitotenv.2007.12.035

  • [16] M.J. Slotnick, J.O. Nriagu, Environ. Res. 102, 125 (2006) http://dx.doi.org/10.1016/j.envres.2005.12.001

  • [17] R.J. Flanagan, A.A. Taylor, I.D. Watson, R. Whelpton, Fundamentals of analytical toxicology (Wiley, London, 2007)

  • [18] J.P. Goulle, E. Saussereau, L. Mahieu, D. Bouige, S. Groenwont, M. Guerbet, C. Lacroix, J Anal Toxicol. 33, 92 (2009)

  • [19] D.L. Massart, B.G.M. Vandeginste, S.M. Deming, Y. Michotte, L. Kaufmann, Chemometrics: A textbook (Elsevier Science B.V, Amsterdam, 2003)

  • [20] K.W. Schramm, Chemosphere 72, 1103 (2008) http://dx.doi.org/10.1016/j.chemosphere.2008.04.017

  • [21] M. Otto, Chemometrics-Statistics and Computer Application in Analytical Chemistry (Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, 2007)

  • [22] J. Mazerski, Chemometria praktyczna (MALAMUT, Warszawa, 2009) (In Polish)

  • [23] D. van Neste, Eur. J. Dermatol. 14, 28 (2004)

  • [24] J. H. Ward Jr., J. Amer. Stat. Assoc. 58, 236 (1963) http://dx.doi.org/10.1080/01621459.1963.10500845

  • [25] A. Sukumar, R. Subramanian, Sci. Total. Environ. 372, 474 (2007) http://dx.doi.org/10.1016/j.scitotenv.2006.10.020

  • [26] K. Gellein, S. Lierhagen, P.S. Brevik, M. Teigen, P. Kaur, T. Singh, T.P. Flaten, T. Syversen, Biol. Trace. Elem. Res. 123, 250 (2008) http://dx.doi.org/10.1007/s12011-008-8104-0

  • [27] R. Pink, J. Simek, J. Vondrakova, E. Faber, P. Michl, J. Pazdera, K. Indrak, Biomed, Papers 153, 103 (2009)

  • [28] A. Sukumar, R. Subramanian, Biol. Trace Elem, Res. 34, 99 (1992) http://dx.doi.org/10.1007/BF02783902

  • [29] A. Gonzalez, U. Peters, J.A. Lampe, A. Gonzalez, U. Peters, J.W. Lampe, J.A. Satia, E. White, Ann. Epidemiol. 18, 74 (2008) http://dx.doi.org/10.1016/j.annepidem.2007.07.100

  • [30] Y.R. Tang, S.Q. Zhang, Y. Xiong, Y. Zhao, H. Fu, H.P. Zhang, K.M. Xiong, Biol. Trace Elem. Res. 92, 97 (2003) http://dx.doi.org/10.1385/BTER:92:2:97

OPEN ACCESS

Journal + Issues

Search