Conformational isomerism of 1-butene secondary ozonide as studied by means of matrix isolation infrared absorption spectroscopy

Simona Strazdaite, Ruta Bariseviciute 2 , Justinas Ceponkus 1 , and Valdas Sablinskas 1
  • 1 Department of General Physics and Spectroscopy, Vilnius University, 2734, Vilnius, Lithuania
  • 2 Institute of Physics, Center for Physical Sciences and Technology, LT-02300, Vilnius, Lithuania
  • 3 FOM Institute AMOLF, 1098, XG Amsterdam, The Netherlands

Abstract

Theoretical calculations of structures, stability and vibrational spectra of 1-butene secondary ozonide (SOZ) conformers were performed using DFT method B3LYP with a 6-311++G(3df, 3pd) basis set. The calculations predict six staggered structures of 1-butene SOZ. The FTIR spectra of 1-butene SOZ isolated in Ar, N2 and Xe matrices were recorded. It was found that nitrogen is the best suited for the matrix isolation of 1-butene SOZ. The bandwidth of the spectral bands of the ozonide isolated in nitrogen was as narrow as 2 cm−1. For the first time the existence of five conformers of 1-butene SOZ were confirmed experimentally by means of matrix isolation infrared absorption spectroscopy. The equatorial gauche (∠OCCC=−66.1°) conformer was proved theoretically and experimentally to be the most stable. It was found that due to high potential barriers of the conformational transitions annealing of the matrix is useless for the assignment of spectral bands to various conformers of 1-butene SOZ. Using the hot nozzle technique the van’t Hoff experimental plots were made for three additional conformers of 1-butene SOZ and experimental ΔH values for these additional conformers were established. The crystallization problems of 1-butene SOZ are discussed which accounts for the rich conformational diversity of the ozonide as well as high conformational barriers for axial-equatorial transitions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. Atkinson, W.P.L. Carter, Chem. Rev. 84, 437 (1984) http://dx.doi.org/10.1021/cr00063a002

  • [2] S.M. Aschmann, R. Atkinson, Environ. Sci. Technol. 28, 1539 (1994) http://dx.doi.org/10.1021/es00057a025

  • [3] R. Atkinson, J. Arey, Atmos. Environ. 37, 197 (2003) http://dx.doi.org/10.1016/S1352-2310(03)00391-1

  • [4] R. Atkinson, J. Arey, Atmos. Environ. 41, 200 (2007) http://dx.doi.org/10.1016/j.atmosenv.2007.10.068

  • [5] K. Griesbaum, V. Miclaus, Environ. Sci. Technol. 32, 647 (1998) http://dx.doi.org/10.1021/es970602r

  • [6] A. Vibenholt, A.W. Nørgaard, P.A. Clausen, P. Wolkoff, Chemosphere 76, 572 (2009) http://dx.doi.org/10.1016/j.chemosphere.2009.02.060

  • [7] R. Criegee, Rec. Chem. Prog. 18, 110 (1957)

  • [8] N.L. Bauld, J.A. Thompson, C.E. Hudson, P.S. Bailey, J. Am. Chem. Soc. 90, 1822 (1968) http://dx.doi.org/10.1021/ja01009a026

  • [9] P.S. Bailey, T.M. Ferrell, A. Rustaiyan, S. Seyhan, L.E. Unruh, J. Am. Chem. Soc. 100, 894 (1978) http://dx.doi.org/10.1021/ja00471a039

  • [10] C.W. Gillies, R.L. Kuczkowski, J. Am. Chem. Soc. 94, 6337 (1972) http://dx.doi.org/10.1021/ja00773a014

  • [11] R.P. Lattimer, R.L. Kuczkowski, C.W. Gillies, J. Am. Chem. Soc. 96, 348 (1974) http://dx.doi.org/10.1021/ja00809a006

  • [12] R.L. Kuczkowski, C.W. Gillies, K.L. Gallaher, J. Mol. Spectrosc. 60, 361 (1976) http://dx.doi.org/10.1016/0022-2852(76)90139-9

  • [13] A.D. Lopata, R.L. Kuczkowski, J. Am. Chem. Soc. 103, 3304 (1981) http://dx.doi.org/10.1021/ja00402a014

  • [14] R.L. Kuczkowski, Acc. Chem. Res. 16, 42 (1983) http://dx.doi.org/10.1021/ar00086a002

  • [15] M.S. LaBarge, H. Keul, R.L. Kuczkowski, M. Wallasch, D. Cremer, J. Am. Chem. Soc. 110, 2081 (1988) http://dx.doi.org/10.1021/ja00215a011

  • [16] R. Barisevičiūtė, J. Čeponkus, A. Gruodis, V. Šablinskas, Cent. Eur. J. Chem. 4, 578 (2006) http://dx.doi.org/10.2478/s11532-006-0031-3

  • [17] R. Bariseviciute, J. Ceponkus, V. Sablinskas, L. Kimtys, J. Mol. Struct. 844–845, 186 (2007) http://dx.doi.org/10.1016/j.molstruc.2007.04.041

  • [18] Y. Haas, U. Samuni, Prog. React. Kinet. 23, 211 (1998)

  • [19] P. Klaeboe, Vibrational Spectroscopy 9, 3 (1995) http://dx.doi.org/10.1016/0924-2031(94)00058-O

  • [20] R. Barisevičiūtė, J. Čeponkus, V. Šablinskas, Cent. Eur. J. Chem. 5, 1 (2007) http://dx.doi.org/10.2478/s11532-006-0054-9

  • [21] J. Dale, In: P.M. Keelen, S.M. Rosenfeld (Eds.), Stereochemistry and conformational analysis (Universitetsforlaget, Oslo, 1978)

  • [22] A. Gatial, V. Sablinskas, P. Klaeboe, D.L. Powell, C.J. Nielsen, J. Raman Spectrosc. 24, 303 (1993) http://dx.doi.org/10.1002/jrs.1250240507

  • [23] E. Whittle, D.A. Dows, G.C. Pimentel, J. Chem. Phys. 22, 1943 (1954)

  • [24] M. Pettersson, E.M.S. Macoas, L. Khriachtchev, J. Lundell, R. Fausto, M. Rasanen, J. Chem. Phys. 117, 9095 (2002) http://dx.doi.org/10.1063/1.1521429

  • [25] A. Trivella, T.N. Wassermann, J.M. Mestdagh, C.M. Tanner, F. Marinelli, P. Roubin, S. Coussa, Phys. Chem. 12, 8300 (2010) http://dx.doi.org/10.1039/c003593a

  • [26] J. Lundell, M. Räsänen, Z. Latajka, Chem. Phys. 189, 245 (1994) http://dx.doi.org/10.1016/0301-0104(94)00226-6

  • [27] L. Andrews, C.K. Kohimiller, J. Phys. Chem. 86, 4548 (1982) http://dx.doi.org/10.1021/j100220a020

  • [28] R.L. Kuczkowski, Chem. Soc. Rev. 21, 79 (1992) http://dx.doi.org/10.1039/cs9922100079

OPEN ACCESS

Journal + Issues

Search