Influence of different templates on the morphology of mesoporous aluminas

Daniela Berger 1 , Gina Traistaru 1 , and Cristian Matei 1
  • 1 Department of Inorganic Chemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, Bucharest, 011061, Romania

Abstract

Mesoporous alumina has many environmental applications as catalysts support and adsorption or separation material. We studied the synthesis conditions for the mesoporous alumina formation from aluminum isopropoxide in the presence of anionic (lauric and stearic acid), cationic (cetyltrimethylammonium bromide, CTAB) and non-ionic (triblock poly(ethylene oxide)-poly(propylene oxide)-polyethyleneoxide, P123) templates. The X-ray diffraction data show that the alumina mesophases obtained at 550°C in the presence of fatty acids or P123 have amorphous walls, whereas the samples prepared at 500°C by using CTAB, in alkaline medium are crystalline with a γ-alumina structure. The solvothermal treatment caused the alumina mesophase with crystalline walls to be obtained at 550°C. The samples were investigated by nitrogen adsorption-desorption isotherms and scanning electron microscopy. The obtained alumina mesophases have specific surface areas in the range of 300–450 m2 g−1, narrow pore size distribution, and different morphology depending on the template used in the synthesis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente, J. Cejka, Catal. Rev. 50, 222 (2008) http://dx.doi.org/10.1080/01614940701804042

  • [2] Y. Kim, C. Kim, P. Kim, J. Yi, J. Non-Crystal. Sol. 351, 550 (2005) http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.009

  • [3] H.K. Farag, M.A. Zoubi, F. Endres, J. Mater. Sci. 44, 122 (2009) http://dx.doi.org/10.1007/s10853-008-3107-y

  • [4] S. Selvakumar, A.P. Singh, Catal. Lett. 128, 363, (2009) http://dx.doi.org/10.1007/s10562-008-9755-3

  • [5] J.C. Ray, K.S. You, J.W. Ahn, W.S. Ahn, Micropor. Mesopor. Mater 100, 183 (2007) http://dx.doi.org/10.1016/j.micromeso.2006.10.036

  • [6] C. Lesaint, G. Kleppa, D. Arla, W.G. Glomn, G. Øye, Micropor. Mesopor. Mater 119, 245 (2009) http://dx.doi.org/10.1016/j.micromeso.2008.10.022

  • [7] Z. You, I. Balint, K. Aika, Chem. Lett. CL-020529, 1090 (2002)

  • [8] I. Balint, Z. You, K. Aika, Phys. Chem. Chem. Phys. 4, 2501, (2002) http://dx.doi.org/10.1039/b202056d

  • [9] S.A. Bagshaw, Pinnavaia, Angew. Chem. Int. Ed. Engl. 35, 1102 (1996) http://dx.doi.org/10.1002/anie.199611021

  • [10] R.W. Hicks, T.J. Pinnavaia, Chem. Mater. 15, 78 (2003) http://dx.doi.org/10.1021/cm020753f

  • [11] C. Kim, Y. Kim, P. Kim, J. Yi, Korean J. Chem. Eng. 20, 1142 (2003) http://dx.doi.org/10.1007/BF02706951

  • [12] P. Kim, Y. Kim, H. Kim, I.K. Song, J. Yi, J. Mol. Catal. A: Chem. 219, 87 (2004) http://dx.doi.org/10.1016/j.molcata.2004.04.038

  • [13] Y. Kim, P. Kim, C. Kim, J. Yi, Korean J. Chem. Eng. 22, 321 (2005) http://dx.doi.org/10.1007/BF02701504

  • [14] P. Colomban, J. Mater. Sci. Lett. 7, 1324 (1998) http://dx.doi.org/10.1007/BF00719972

  • [15] A. Caragheorgheopol, A. Rogozea, R. Ganea, M. Florent, D. Goldfarb, J. Phys. Chem. C 114, 28–35 (2010) http://dx.doi.org/10.1021/jp907478v

  • [16] R.A. Schoonheydt, K.Y. Jacobs, in: H. van Bekkun, E.M. Flanigen, P.A. Jacobs, J.C. Jansen (Eds.), Introduction to zeolite science and practice (Elsevier, Amsterdam, 2001) 322–323

  • [17] Q. Wu, F. Zhang, J. Yang, Q. Li, B. Tu, D. Zhao, Micropor. Mesopor. Mater. 143, 406 (2011) http://dx.doi.org/10.1016/j.micromeso.2011.03.033

OPEN ACCESS

Journal + Issues

Search