Polybenzene multitori

Beata Szefler 1  and Mircea Diudea 2
  • 1 Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, 85-950, Bydgoszcz, Poland
  • 2 Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca, Romania


Polybenzene unit BT_48 can dimerize either by identification of 8-membered rings to provide a diamond-like fcc net or by identifying the opening 12-membered rings to form intercalated dendrimer-dimers which can further grow and rather quickly superimpose over the diamond-like network. The third hypothetical moiety we consider here is an eclipsed isomer, that can form multitori as negatively curved structures of various complexity. Multitori can evolve spherically or show a linear periodicity, as in rods. The polybenzene (“armchair”) multitori BTA are compared to the (“zig-zag”) BTZ ones, proposed earlier by us. A graph-theoretical study related the structure of multitori to the genus of their embedding surface and established the lower and upper bound values of genus. The total energy per carbon atom, HOMO-LUMO gap and strain energy of BTA and BTZ multitori have been computed and the results obtained point to BTZ multitori to be at least as stable as C60 what suggests BTZ multitori can be eventually synthesized in laboratory.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M.V. Diudea, Cs.L. Nagy, Periodic Nanostructures (Springer, Dordrecht, 2007) http://dx.doi.org/10.1007/978-1-4020-6020-5

  • [2] M.V. Diudea, Nanostructures, Novel Architecture (Nova, N.Y., 2005)

  • [3] M.V. Diudea, M. Petitjean, Symmetry, Culture, Sci. 19, 285 (2008)

  • [4] T. Lenosky, X. Gonze, M. Teter, V. Elser, Nature, 355, 333 (1992) http://dx.doi.org/10.1038/355333a0

  • [5] A.L. Mackay, H. Terrones, Nature, 352, 762 (1991) http://dx.doi.org/10.1038/352762a0

  • [6] H. Terrones, A.L. Mackay, Chem. Phys. Lett. 207, 45 (1993) http://dx.doi.org/10.1016/0009-2614(93)85009-D

  • [7] H.A. Schwarz, Über Minimalflächen, Monatsber. (Berlin Akad., Berlin, 1865) (In German)

  • [8] H.A. Schwarz, Gesammelte Matematische Abhandlungen (Springer, Berlin, 1890) (In German) http://dx.doi.org/10.1007/978-3-642-50665-9

  • [9] M.V. Diudea, Nanomolecules and Nanostructures — Polynomials and Indices, MCM series (Univ. Kragujevac, Serbia, 2010) No. 10

  • [10] M. O’Keeffe, G.B. Adams, O.F. Sankey, Phys. Rev. Lett. 68, 2325 (1992) http://dx.doi.org/10.1103/PhysRevLett.68.2325

  • [11] M.V. Diudea, P.E. John, A. Graovac, M. Primorac, T. Pisanski, Croat. Chem. Acta, 76, 153 (2003)

  • [12] M.V. Diudea, Forma (Tokyo) 19, 131 (2004)

  • [13] M. Ştefu, M.V. Diudea, P.E. John, Studia Univ. “Babes-Bolyai”, Chemia, 50(2), 165 (2005)

  • [14] M.V. Diudea, J. Chem. Inf. Model. 45, 1002 (2005) http://dx.doi.org/10.1021/ci050054y

  • [15] M.V. Diudea, M. Ştefu, P. E. John, A. Graovac, Croat. Chem. Acta, 79, 355 (2006)

  • [16] M. Stefu, M.V. Diudea, CVNET software (“Babes-Bolyai” University, Cluj, 2005)

  • [17] Cs.L. Nagy, M.V. Diudea, Nano Studio software (“Babes-Bolyai” University, Cluj, 2009)

  • [18] M.V. Diudea, Cs.L. Nagy, A. Ilić, in: M.V. Putz (Ed.), Carbon Bonding and Structures, (Springer, Dordrecht, Heidelberg, London, New York, 2011) 11, 273 http://dx.doi.org/10.1007/978-94-007-1733-6_11

  • [19] M.V. Diudea, Cs.L. Nagy, Diamond Relat. Mater. 23, 105 (2012) http://dx.doi.org/10.1016/j.diamond.2012.01.001

  • [20] X. Blase, G. Benedek, M. Bernasconi, in: L. Colombo, A. Fasolino (Eds.), Computer-based modeling of novel carbon systems and their properties. Beyond nanotubes (Springer, Dordrecht, Heidelberg, London, New York, 2010) 6, 171 http://dx.doi.org/10.1007/978-1-4020-9718-8_6

  • [21] F. Harary, Graph Theory (Addison Wesley, Reading, M.A., 1969)

  • [22] L. Euler, Novi Comm. Acad. Scient. Imp. Petrop. 4, 109 (1758)

  • [23] O. Bonnet, C.R. Acad. Sci. Paris 37, 529 (1853)

  • [24] D.J. Klein, H. Zhu, in: A.T. Balaban (Ed.), From Chemical Topology to three-dimensional Geometry. (Plenum Press, New York, 1997) 297

  • [25] R.C. Haddon, J. Am. Chem. Soc. 112, 3385 (1990) http://dx.doi.org/10.1021/ja00165a020

  • [26] R.C. Haddon, J. Phys. Chem. A 105, 4164 (2001) http://dx.doi.org/10.1021/jp010023f

  • [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian Inc., Wallingford CT, Revision A.1, 2009)

  • [28] Cs.L. Nagy, M.V. Diudea, JSChem software (“Babes-Bolyai” University, Cluj, 2005)


Journal + Issues