Mechanochemical synthesis of thenoyltrifluoroacetone-1,10-phenanthroline europium complex

Joana Zaharieva 1 , Maria Milanova 1 , and Dimitar Todorovsky 1
  • 1 Faculty of Chemistry, University of Sofia, Sofia, 1164, Bulgaria

Abstract

The paper considers the possibilities for mechanochemical synthesis of rare earth complexes. The complex Eu(TTA)3·phen (HTTA — 2-thenoyltrifluoroacetone, phen — 1,10-phenanthroline) is synthesized by mechanical treatment of a mixture of EuCl3.6H2O, HTTA, phen and NaOH in planetary ball mill Pulverisette 7 for 30 min at 800 min−1. The non reacted starting reagents and reaction side products are separated by treating activated mixture with water-ethanol solution following a procedure proposed in the literature. The elemental composition, X-ray diffraction pattern, IR spectra, optical properties (excitation and emission spectra, luminescence lifetime) and morphology of the mechanochemically synthesized complex are compared with those of the complex prepared from solution by the conventional method. The results confirm close similarity in the molecular structure and identity of the elemental composition, X-ray diffractograms and fluorescence properties of the compounds prepared by both methods.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L. Yuguang, Zh. Jingchang, C. Weiliang, Zh. Fujun, X. Zheng, J. Rare Earths 25, 296 (2007) http://dx.doi.org/10.1016/S1002-0721(07)60425-6

  • [2] Y. Amao, I. Okura, T. Miyashita, Chemistry Lett. 29, 934 (2000) http://dx.doi.org/10.1246/cl.2000.934

  • [3] Y. Hasegawa, Y. Wada, Sh. Yanagida, J. Photochem. Photobiology C: Photochem. Reviews 5, 183 (2004) http://dx.doi.org/10.1016/j.jphotochemrev.2004.10.003

  • [4] J.-C.G. Bünzli, Chem. Rev. 110, 2729 (2010) http://dx.doi.org/10.1021/cr900362e

  • [5] K. Binnemans, In: K.A. Gschneidner, Jr., J.-C.G. Bünzli, V.K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 2005) vol. 35, chapter 225, p. 161

  • [6] K. Binnemans, Chem. Rev. 109, 4283 (2009) http://dx.doi.org/10.1021/cr8003983

  • [7] P.A. Vigato, V. Peruzzo, S. Tamburini, Coord. Chem. Rev. 253, 1099 (2009) http://dx.doi.org/10.1016/j.ccr.2008.07.013

  • [8] M. Uekawa, Y. Miyamoto, H. Ikeda, K. Kaifu, T. Nakaya, Bull. Chem. Soc. Jpn. 71, 2253 (1998) http://dx.doi.org/10.1246/bcsj.71.2253

  • [9] I.V. Kalinovskaya, V.E. Karasev, Russian J. Inorg. Chem. 45, 1360 (2000)

  • [10] I.V. Kalinovskaya, V.E. Karasev, Yu.M. Nikolenko, V.G. Kuryavyi, Russian J. Physical Chem. A 80, 1389 (2006) http://dx.doi.org/10.1134/S0036024406090068

  • [11] I.V. Kalinovskaya, V.E. Karasev, A.V. Romanchenko, Russian J. Physical Chem. A 79, 1158 (2005)

  • [12] I.V. Kalinovskaya, V.E. Karasev, A.V. Romanchenko, V.G. Kuryavyj, Russian J. Inorg. Chem. 52, 518 (2007) http://dx.doi.org/10.1134/S0036023607040092

  • [13] I.V. Kalinovskaya, V.G. Kuryavyj, V.E. Karasev, Russian J. Physical Chem. A 81, 1712 (2007) http://dx.doi.org/10.1134/S0036024407100329

  • [14] J. Zaharieva, M. Milanova, D. Todorovsky, Cent. Eur. J. Chem. 9, 290 (2011) http://dx.doi.org/10.2478/s11532-011-0014-x

  • [15] J.-P. Duan, P.-P. Sun, C.-H. Cheng, J. Mat. Online 1, 1 (2005)

  • [16] S.-J. Seo, D. Zhao, K. Suh, J.H. Shin, B.-S. Bae, J. Luminescence 128, 565 (2008) http://dx.doi.org/10.1016/j.jlumin.2007.08.012

OPEN ACCESS

Journal + Issues

Search