Mimicking the morphology of long bone

Anton Ficai 1 , Ecaterina Andronescu 1 , Denisa Ficai 1 , Maria Sonmez, Madalina Albu 2 , and Georgeta Voicu 1
  • 1 Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 011061, Bucharest, Romania
  • 2 National Research & Development Institute for Textiles and Leather (INCDTP) — Leather and Footwear Research Institute, 031215, Bucharest, Romania

Abstract

The aim of this work was to mimic the stratified structure of the median region of long bones. Starting from this desideratum, more COLL/HA composite materials with different morphology were synthesized and characterized, each of these materials mimicking one layer of long bone (endo- and periosteum, compact and cancellous bony tissue). Stratified bone grafts were obtained by assembling these layers; the obtained grafts were similar to the median region of long bones. Even though, natural bones have a more complex microstructure, this is a pioneering work since for the first time a stratified COLL/HA composite material similar to bone was produced.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] P. Fratzl, R. Weinkamer, Progress in Materials Science 52, 1263 (2007) http://dx.doi.org/10.1016/j.pmatsci.2007.06.001

  • [2] C. Hellmich, A. Fritsch, L. Dormieux, Materials Research Society 1239, 53 (2010)

  • [3] P. Augat, S. Schorlemmer, Age and Ageing 35, ii27 (2006) http://dx.doi.org/10.1093/ageing/afl081

  • [4] C. Hellmich, J.F. Barthelemy, L. Dormieux, European Journal of Mechanics A/Solids 23, 783 (2004) http://dx.doi.org/10.1016/j.euromechsol.2004.05.004

  • [5] S. Bandyopadhyay-Ghosh, Trends Biomater. Artif. Organs 22, 112 (2008)

  • [6] F.H. Martini, Fundamentals of Anatomy and Physiology, 6th edition, (Prentice Hall, New Jersey, 2004)

  • [7] F.-Z. Cui, Y. Li, J. Ge, Materials Science and Engineering R 57, 1 (2007) http://dx.doi.org/10.1016/j.mser.2007.04.001

  • [8] S. Parikh, Journal of Postgraduated Medicine 48, 142 (2002)

  • [9] D.I. Ilan, A.L. Ladd, Operative Techniques in Plastic and Reconstructive Surgery 9, 151 (2002) http://dx.doi.org/10.1053/j.otpr.2003.09.003

  • [10] S.V. Dorozhkin, Journal of Materials Science 44, 2343 (2009) http://dx.doi.org/10.1007/s10853-008-3124-x

  • [11] C. Bertoldi, D. Zaffe, U. Consolo, Biomaterials 29, 1817 (2008) http://dx.doi.org/10.1016/j.biomaterials.2007.12.034

  • [12] K.J.L. Burg, S. Porter, J.F. Kellam, Biomaterials 21, 2347 (2000) http://dx.doi.org/10.1016/S0142-9612(00)00102-2

  • [13] R. Murugan, S. Ramakrishna, Composites Science and Technology 65, 2385 (2005) http://dx.doi.org/10.1016/j.compscitech.2005.07.022

  • [14] S. Weiner, H.D. Wagner, Annual Review of Materials Science 28, 271 (1998) http://dx.doi.org/10.1146/annurev.matsci.28.1.271

  • [15] C.Y. Wu, K. Sassa, K. Iwai, S. Asai, Materials Letters 61, 1567 (2007) http://dx.doi.org/10.1016/j.matlet.2006.07.080

  • [16] A. Ficai, E. Andronescu, V. Trandafir, C. Ghitulica, G. Voicu, Materials Letters 64, 541 (2010) http://dx.doi.org/10.1016/j.matlet.2009.11.070

  • [17] A. Ficai et al., Chemical Engineering Journal 160, 794 (2010) http://dx.doi.org/10.1016/j.cej.2010.03.088

  • [18] E. Andronescu et al., Journal of Electron Microscopy 60, 253 (2011) http://dx.doi.org/10.1093/jmicro/dfr010

  • [19] M.G. Albu, Collagen Gels and Matrices for Biomedical Applications. (Lambert Academic Publishing, Saarbrücken, Germany, 2011)

  • [20] M.G. Albu et al., Journal of Materials Research 27, 1086 (2012) http://dx.doi.org/10.1557/jmr.2012.21

  • [21] D.G.J. Stewart, D.A. Cooley, The Skeletal and Muscular Systems. (Chelesea House, New York, 2009)

  • [22] J. S. Sun et al., Artificial Organs 27, 605 (Jul, 2003) http://dx.doi.org/10.1046/j.1525-1594.2003.07169.x

  • [23] S. Teixeira, L. Yang, P. Dijkstra, M. Ferraz, F. Monteiro, Journal of Materials Science: Materials in Medicine 21, 2385 (2010) http://dx.doi.org/10.1007/s10856-010-4097-2

OPEN ACCESS

Journal + Issues

Search