Chitosan/anionic surfactant microparticles synthesized by high pressure spraying method for removal of phenolic pollutants

Sandu Peretz 1 , Manuela Florea-Spiroiu 2 , Dan-Florin Anghel 1 , Daniela Bala 2 , Florina Branzoi 1 , and Jose-Calderon Moreno 1
  • 1 Department of Colloids, Institute of Physical Chemistry “I. Murgulescu”, 060021, Bucharest, Romania
  • 2 Department of Physical Chemistry, University of Bucharest, 030018, Bucharest, Romania

Abstract

Biopolymeric microparticles were prepared by rapid expansion of high pressure CO2-chitosan (Chi) solution in sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT) solution. At pressures higher than 2 MPa, ultrafine particles were formed while under this value, wires were obtained. The formation of Chi/AOT complex was confirmed by Fourier Transform Infrared (FTIR) Spectroscopy, whereas scanning electron microscopy was used to characterize the morphology, size and shape of the particles. The FTIR spectrum proved the interaction between the sulfonate groups of AOT and the amino groups of Chi. Microparticles are quasi-spherical in wet conditions and irregular after freeze drying, presenting a rough surface with many pores. Lyophilized hydrophobic microparticles were used to remove phenol and o-cresol from aqueous solution, and the adsorption process showed a maximum efficiency in the 7–8 pH range. The uptake of phenol and o-cresol increased with the amount of particles and decreased with increasing the pollutant concentration. The adsorption occurred rapidly in the first 60–120 minutes, and leveled off thereafter.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Wu, H.Q. Yu, Process Biochem. 41, 44 (2006) http://dx.doi.org/10.1016/j.procbio.2005.03.065

  • [2] R. Aravindhan, J. R. Rao, B.U. Nair, J. Environ. Manage. 90, 1877 (2009) http://dx.doi.org/10.1016/j.jenvman.2008.12.005

  • [3] J.H. Tay, Y.G. He, Y.G. Yan YG, J. Environ. Eng. ASCE 127, 38 (2001) http://dx.doi.org/10.1061/(ASCE)0733-9372(2001)127:1(38)

  • [4] S. Peretz, O. Cinteza, Colloid. Surface. A 319(1–3), 165 (2008) http://dx.doi.org/10.1016/j.colsurfa.2007.06.012

  • [5] A. Ely, M. Baudu, J-P. Basly, M. Ould Kankou, J. Hazard. Mater. 171, 405 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.06.015

  • [6] B. Samiey, M.R. Dargahi, Centr. Eur. J. Chem. 8, 906 (2010) http://dx.doi.org/10.2478/s11532-010-0055-6

  • [7] A. Bhatnagar, M. Sillanpää, Adv. Colloid Interface Sci. 152, 26 (2009) http://dx.doi.org/10.1016/j.cis.2009.09.003

  • [8] P.N. Sudha, In S.K. Kim (Ed.), Chitin, Chitosan, Oligosaccharides and Their Derivatives (CRC Press, Boca Raton, London and New York, 2011) 561

  • [9] M. Monier, D.M. Ayad, Y. Wei, A.A. Sarhan, J. Hazard. Mater. 177, 962 (2010) http://dx.doi.org/10.1016/j.jhazmat.2010.01.012

  • [10] G. Crini, P-M. Badot, Prog. Polym. Sci. 33, 39 (2008) http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001

  • [11] M. Kucharska, K. Walenko, B. Butruk, T. Brynk, M. Heljak, T. Ciach, Mater. Lett. 64, 1059 (2010) http://dx.doi.org/10.1016/j.matlet.2010.02.012

  • [12] J.M. Li, X.G. Meng, C.W. Hu, J. Du, Bioresource Technol. 100, 1168 (2009) http://dx.doi.org/10.1016/j.biortech.2008.09.015

  • [13] S.K. Nadavala, K. Swayampakula, V.M. Boddu, K. Abburi, J. Hazard. Mater. 162, 482 (2009) http://dx.doi.org/10.1016/j.jhazmat.2008.05.070

  • [14] M.A.L. Milhome, D. Keukeleire, J.P. Ribeiro, R.F. Nascimento, T.V. Carvalho, D.C. Queiroz, Quim. Nova 32, 2122 (2009) http://dx.doi.org/10.1590/S0100-40422009000800025

  • [15] M. Olteanu, I. Mandru, M. Dudau, S. Peretz, O. Cinteza, Progr. Colloid Polym. Sci. 122, 87 (2003) http://dx.doi.org/10.1007/3-540-36114-6_11

  • [16] I.E. Pacios, C.S. Renamayor, A. Horta, B. Lindman, K. Thuresson, J. Colloid Interface Sci. 299, 378 (2006) http://dx.doi.org/10.1016/j.jcis.2006.01.070

  • [17] S. Chatterjee, T. Chatterjee, S.H. Woo, Bioresource Technol. 101, 3853 (2010) http://dx.doi.org/10.1016/j.biortech.2009.12.089

  • [18] M. Rinaudo, N.R. Kil’deeva, V.G. Babak, Russ. J. Gen. Chem. 78, 2239 (2008) http://dx.doi.org/10.1134/S1070363208110455

  • [19] C. Onesippe, S. Lagerge, Colloid Surface. A 317, 100 (2008) http://dx.doi.org/10.1016/j.colsurfa.2007.10.002

  • [20] J.M. DeSimone, Science 297, 799 (2002) http://dx.doi.org/10.1126/science.1069622

  • [21] R.S. Juang, S.H. Lin, K.H. Tsao, J. Colloid Interface Sci. 254, 234 (2002) http://dx.doi.org/10.1006/jcis.2002.8629

  • [22] F. Rozada, M. Otero, A. Morán, A.I. García, Bioresource Technol. 99, 6332 (2008) http://dx.doi.org/10.1016/j.biortech.2007.12.015

  • [23] Y. Wu, S. Zhang, X. Guo, H. Huang, Bioresource Technol. 99, 7709 (2008) http://dx.doi.org/10.1016/j.biortech.2008.01.069

  • [24] V. Vadielan, K.V. Kumar, J. Colloid Interface Sci. 286, 90 (2005) http://dx.doi.org/10.1016/j.jcis.2005.01.007

  • [25] G. McKay, J. Chem. Technol. Biotechnol. 32, 759 (1982) http://dx.doi.org/10.1002/jctb.5030320712

  • [26] S. Azizian, J. Colloid Interface Sci. 276, 47 (2004) http://dx.doi.org/10.1016/j.jcis.2004.03.048

  • [27] Y.S. Ho, G. McKay, Proc. Biochem. 34, 451 (1999) http://dx.doi.org/10.1016/S0032-9592(98)00112-5

OPEN ACCESS

Journal + Issues

Search