Shape-controlled synthesis of polyhedral CdS flowerlike architectures and their optical properties

Qinghong Kong 1 , Hui Wu 1 , Xingguang Zhang 1 , Shanshan Yao 2 , Junhao Zhang, and Xiaoning Zhang 1
  • 1 Jiangsu University Branch Center of State Key Lab of Urban Water Resource and Environment, Jiangsu University, Zhenjiang, 212013, China
  • 2 Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Kochi, 780-8520, Japan
  • 3 School of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, 212018, China

Abstract

Fabrication of polyhedral CdS flower-like architectures have been achieved on a large scale through a mixed solvothermal method. The obtained CdS are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy, and the results indicate that the CdS flower-like architectures with diameters of 1.5–2.0 µm are hexagonal wurtzite phase and are assembled by some pyramids with the bottom side length of about 440 nm, which have some crystallographic faces. A series of relevant experiments through altering experimental parameters, indicate that the temperature, starting materials and solvent play key roles for the shape evolution of CdS flower-like architectures. The studies of optical properties for polyhedral CdS flower-like architectures indicate that the UV-vis spectroscopy shows a blue-shift absorption peak at 500 nm compared to that of bulk CdS, the photoluminescence spectroscopy shows an emission peak at 640 nm and another strong emission peak at 695 nm, which are believed to be attributed to excitonic emission and deep levels.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S.W. Hsu, K. On, A.R. Tao, J. Am. Chem. Soc. 133, 19072 (2011) http://dx.doi.org/10.1021/ja2089876

  • [2] S. Heedt, C. Morgan, K. Weis, D.E. Burgler, R. Calarco, H. Hardtdegen, D. Grutzmacher, Th. Schapers, Nano Lett. 12, 4437 (2012) http://dx.doi.org/10.1021/nl301052g

  • [3] D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F.F. Shi, K.L. Fan, J. Phys. Chem. C 113, 4369 (2009) http://dx.doi.org/10.1021/jp810726d

  • [4] Y. Cui, G. Wang, D.C. Pan, J. Mater. Chem. 22, 12471 (2012) http://dx.doi.org/10.1039/c2jm32034g

  • [5] Z.L. Wang, J.H. Song, Science 312, 242 (2006) http://dx.doi.org/10.1126/science.1124005

  • [6] H.B. Li, L.L. Chai, X.Q. Wang, X.Y. Wu, G.C. Xi, Y.K. Liu, Y.T. Qian, Cryst. Growth Des. 7, 1918 (2007) http://dx.doi.org/10.1021/cg0703588

  • [7] T. Ghoshal, S. Biswas, P.M.G. Nambissan, G. Majumdar, S.K. De, Cryst. Growth Des. 9, 1287 (2009) http://dx.doi.org/10.1021/cg800203y

  • [8] R. Graham, D. Yu, Nano Lett. 12, 4360 (2012) http://dx.doi.org/10.1021/nl302161n

  • [9] Y. Qin, F. Zhang, Y. Chen, Y.J. Zhou, J. Li, A.W. Zhu, Y.P. Luo, Y. Tian, J.H. Yang, J. Phys. Chem. C 116, 11994 (2012) http://dx.doi.org/10.1021/jp212029n

  • [10] S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D. Song, H.G. Park, C.M. Lieber, Nano Lett. 12, 4971 (2012) http://dx.doi.org/10.1021/nl302578z

  • [11] O. Loh, X.D. Wei, C.H. Ke, J. Sullivan, H.D. Espinosa, Small 7, 79 (2011) http://dx.doi.org/10.1002/smll.201001166

  • [12] C. Nobile, P.D. Ashby, P.J. Schuck, A. Fiore, R. Mastria, R. Cingolani, L. Manna, R. Krahne, Small 4, 2123 (2008) http://dx.doi.org/10.1002/smll.200800604

  • [13] S.C. Hayden, N.K. Allam, M.A. El-Sayed, J. Am. Chem. Soc. 13, 14406 (2010) http://dx.doi.org/10.1021/ja107034z

  • [14] L. Weinhardt, T. Gleim, O. Fuchs, C. Heske, E. Umbach, M. Bar, H.J. Muffler, C.H. Fischer, M.C. Lux-Steiner, Y. Zubavichus, T.P. Niesen, F. Karg, Appl. Phys. Lett. 82, 571 (2003) http://dx.doi.org/10.1063/1.1539553

  • [15] T. Gao, Q.H. Li, T.H. Wang, Appl. Phys. Lett. 86, 173105 (2005) http://dx.doi.org/10.1063/1.1915514

  • [16] J.B. Seon, S.Y. Lee, J.M. Kim, H.D. Jeong, Chem. Mater. 21, 604 (2009) http://dx.doi.org/10.1021/cm801557q

  • [17] K. Sato, Y. Tachibana, S. Hattori, T. Chiba, S. Kuwabata, J. Colloid Interf. Sci. 324, 257 (2008) http://dx.doi.org/10.1016/j.jcis.2008.04.075

  • [18] Z.X. Yang, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Cryst. Growth Des. 11, 2172 (2011) http://dx.doi.org/10.1021/cg101463r

  • [19] X.Q. Fu, J.Y. Liu, Y.T. Wan, X.M. Zhang, F.L. Meng, J.H. Liu, J. Mater. Chem. 22, 17782 (2012) http://dx.doi.org/10.1039/c2jm33352j

  • [20] R.M. Ma, L. Dai, G.G. Qin, Appl. Phys. Lett. 90, 93109 (2007) http://dx.doi.org/10.1063/1.2710004

  • [21] V. Singh, R. Singh, G. Thompson, V. Jayaraman, S. Sanagapalli, V. Rangari, Sol. Energy Mater. Sol. Cells 81, 293 (2004) http://dx.doi.org/10.1016/j.solmat.2003.11.007

  • [22] Y.W. Jun, S.M. Lee, N.J. Kang, J. Cheon, J. Am. Chem. Soc. 123, 5150 (2001) http://dx.doi.org/10.1021/ja0157595

  • [23] X.L. Wang, Z.C. Feng, D.Y. Fan, F.T. Fan, C. Li, Cryst. Growth Des. 10, 5312 (2010) http://dx.doi.org/10.1021/cg101166t

  • [24] S.C. Yan, L.T. Sun, Y. Sheng, N.P. Huang, Z.D. Xiao, New J. Chem. 35, 299 (2011) http://dx.doi.org/10.1039/c0nj00838a

  • [25] S.L. Xiong, X.G. Zhang, Y.T. Qian, Cryst. Growth Des. 9, 5259 (2009) http://dx.doi.org/10.1021/cg900780a

  • [26] T.Y. Zhai, X.S. Fang, Y. Bando, B. Dierre, B.D. Liu, H.B. Zeng, X.J. Xu, Y. Huang, X.L. Yuan, T. Sekiguchi, D. Golberg, Adv. Funct. Mater. 19, 2423 (2009) http://dx.doi.org/10.1002/adfm.200900295

  • [27] T.Y. Zhai, X.S. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168 (2010) http://dx.doi.org/10.1039/b9nr00415g

  • [28] S.L. Xiong, B.J. Xi, Y.T. Qian, J. Phys. Chem. C 114, 14029 (2010) http://dx.doi.org/10.1021/jp1049588

  • [29] L.Y. Chen, Z.D. Zhang, W.Z. Wang, J. Phys. Chem. C 112, 4117 (2008) http://dx.doi.org/10.1021/jp710074h

  • [30] Z.X. Yang, W. Zhang, P. Zhang, M.H. Xu, C.T. Au, Y.W. Du, CrystEngComm 14, 585 (2012) http://dx.doi.org/10.1039/c1ce05732d

  • [31] G.Z. Shen, C.J. Lee, Cryst. Growth Des. 5, 1085 (2005) http://dx.doi.org/10.1021/cg0496437

  • [32] P.T. Zhao, K.X. Huang. Cryst. Growth Des. 8, 717 (2008) http://dx.doi.org/10.1021/cg070252c

OPEN ACCESS

Journal + Issues

Search