Electrochemical study of dsDNA on carbon nanotubes paste electrodes applying cyclic and differential pulse voltammetry

Constantina Serpi 1 , Anastasios Voulgaropoulos 1 , and Stella Girousi 1
  • 1 Analytical Chemistry Laboratory, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece

Abstract

Abstract Carbon nanotubes paste electrodes (CNTPEs) in combination with adsorptive transfer stripping voltammetry are shown to be very suitable for the determination of calf thymus double-stranded DNA (dsDNA). The performance of three types of multi-walled carbon nanotubes paste electrodes (MWCNTPEs) is investigated. The effects of surface pre-treatment and accumulation conditions on the adsorption and electrooxidation of the dsDNA at MWCNTPEs are also described. The results indicate that the electroactivity inherent to carbon nanotubes/paste electrodes allows a large enhancement of the guanine oxidation signal compared to that obtained at the conventional carbon paste electrodes (CPEs). Moreover, the extent of the enhancement dependents on the type of MWCNTs incorporated into the paste. Based on the signal of guanine, under optimal conditions, very low levels of dsDNA can be detected following short accumulation times for all three types of MWCNTPEs (MWCNTPE1, MWCNTPE2, MWCNTPE3), with detection limits of 2.64 mg L−1, 2.02 mg L−1 and 1.46 mg L−1, respectively. Additionally, the dsDNA isolated from rat liver tissues is determined by use of the previously mentioned MWCNTPEs. Graphical abstract

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K.B. Wu, J.J. Fei, S.S. Hu, Anal. Biochem. 318, 100 (2003) http://dx.doi.org/10.1016/S0003-2697(03)00174-X

  • [2] G. Wang, J.J. Xu, H.Y. Chen, Electrochem. Commun. 4, 506 (2002) http://dx.doi.org/10.1016/S1388-2481(02)00360-0

  • [3] U. Yogeswaran, S. Thiagarajan, S.M. Chen, Anal. Biochem. 365, 122 (2007) http://dx.doi.org/10.1016/j.ab.2007.02.034

  • [4] Y.C. Tsai, C.C. Chiu, Sens. Actuator B: Chem. 125, 10 (2007) http://dx.doi.org/10.1016/j.snb.2007.01.032

  • [5] J.X. Zeng, X.H. Gao, W.Z. Wei, X.R. Zhai, J. Yin, L. Wu, X.Y. Liu, K. Liu, S.G. Gong, Sens. Actuator B: Chem. 120, 595 (2007) http://dx.doi.org/10.1016/j.snb.2006.03.016

  • [6] J.M. Xu, Y.P. Wang, Y.Z. Xian, L.T. Jin, K. Tanaka, Talanta 60, 1123 (2003) http://dx.doi.org/10.1016/S0039-9140(03)00214-5

  • [7] Y.D. Zhao,W.D. Zhang, H. Chen, Q.M. Luo, Talanta 58, 529 (2002) http://dx.doi.org/10.1016/S0039-9140(02)00318-1

  • [8] S.G. Wang, Q. Zhang, R. Wang, S.F. Yoon, J. Ahn, D.J. Yang, J.Z. Tian, J.Q. Li, Q. Zhou, Electrochem. Commun. 5, 800 (2003) http://dx.doi.org/10.1016/j.elecom.2003.07.007

  • [9] P.F. Liu, J.H. Hu, Sens. Actuator B: Chem. 8, 194 (2002) http://dx.doi.org/10.1016/S0925-4005(02)00024-2

  • [10] H. Zhu G.C. Zhao, Microchim. Acta 165, 329 (2009) http://dx.doi.org/10.1007/s00604-009-0138-2

  • [11] J. Wang, Y. Lin, Trends in Anal. Chem. 27, 619 (2008) http://dx.doi.org/10.1016/j.trac.2008.05.009

  • [12] A. Ferancová, J. Labuda, (WILEY-VCH Verlag, 2008)

  • [13] M.L. Pedano, G.A. Rivas, Electrochem. Commun. 6, 10 (2004) http://dx.doi.org/10.1016/j.elecom.2003.10.008

  • [14] H. Qi, X. Li, P. Chen, C. Zhang, Talanta 72, 1030 (2007) http://dx.doi.org/10.1016/j.talanta.2006.12.032

  • [15] I. Balan, I.G. David, V. David, A.I. Stoica, C. Mihailciuc, I. Stamatin, A.A. Ciucu, J. Electr. Chemi. 654, 8 (2011) http://dx.doi.org/10.1016/j.jelechem.2011.02.002

  • [16] S.Y. Ly, H.-S. Yoo, S.H. Choa, J. Microb. Meth. 87, 44 (2011) http://dx.doi.org/10.1016/j.mimet.2011.07.002

  • [17] S.Y. Ly, N.S. Chob, J. Clinic Virol. 44, 43 (2009) http://dx.doi.org/10.1016/j.jcv.2008.09.005

  • [18] P. Palaska, E. Aritzoglou, S. Girousi, Talanta 72, 1199 (2007) http://dx.doi.org/10.1016/j.talanta.2007.01.013

  • [19] V. Brabec, J. Koudelka, Bioelectrochem. Bioenerg. 7, 793 (1980) http://dx.doi.org/10.1016/0302-4598(80)80043-2

  • [20] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Talanta 74, 291 (2007) http://dx.doi.org/10.1016/j.talanta.2007.10.013

  • [21] H. Qi, X. Li, P. Chen, C. Zhang, Talanta 72, 1030 (2007) http://dx.doi.org/10.1016/j.talanta.2006.12.032

  • [22] J. Wang, G. Rivas, X. Cai, M. Chicharro, N. Dontha, D. Luo, E. Palecek, P. Nielsen, Electroanalysis 9, 120 (1997) http://dx.doi.org/10.1002/elan.1140090206

  • [23] B.J. Taft, A.D. Lazareck, G.D. Withey, A. Yin, J.M. Xu, S.O. Kelley, J. Am. Chem. Soc. 126, 12750 (2004) http://dx.doi.org/10.1021/ja045543d

  • [24] C. Kokkinos, I. Raptis, A. Economou, T. Speliotis, Electroanalysis 22, 2359 (2010) http://dx.doi.org/10.1002/elan.201000252

OPEN ACCESS

Journal + Issues

Search