Determination of H2S and HCl concentration limits in the fuel for anode supported SOFC operation

Marcin Błesznowski 1 , Janusz Jewulski 1 , and Agata Zieleniak 1
  • 1 Institute of Power Engineering, Fuel Cell Department, Augustówka ST.36, 02-981, Warszawa, Poland


Solid oxide fuel cell (SOFC) is an electric generator, operating based on electrochemical reaction converting gaseous fuel to electricity and heat. It is characterized by the high electrical efficiency of up to 70% with cogeneration and negligible emission of pollutants. Syngas from the biomass gasification is considered to be a possible fuel for solid oxide fuel cell systems. However, high level of contaminants such as H2S, HCl, alkali metals, tars and particulates, in addition to possibility of carbon deposition and high temperature gradients due to internal reforming of hydrocarbons requires cleaning and conditioning of the syngas stream. The current status of the effect of contaminants on the SOFC performance has been reviewed and effects of single contaminants (H2S, HCl) has been tested. It has been found that anode supported solid oxide fuel cell (AS-SOFC) with Ni/YSZ cermet anode can tolerate up to 1 ppm H2S and up to 10 ppm HCl without significant performance degradation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J.P. Trembly, A.I. Marquez, T.R. Ohrn, D.J. Bayless, J. Power Sources 158, 263 (2006)

  • [2] Z. Cheng, S. Zha, M. Liu, J. Power Sources 172, 925 (2007)

  • [3] J. Kupecki, K. Badyda, Archives of Thermodynamics 32, 33 (2011)

  • [4] J. Milewski; K. Badyda, A. Miller, Rynek Energii 159 (2010)

  • [5] F.N. Cayan, M. Zhi, S.R. Pakalapati, I. Celik, N. Wu, R. Gemmen, J. Power Sources 185, 595 (2008)

  • [6] J.P. Trembly, R.S. Gemmen, D.J. Bayless, J. Power Sources 171, 818–825 (2007)

  • [7] O.A. Marina, L.R. Pederson, D.J. Edwards, et al., The 8th Annual SECA Workshop, 7–9 August 2007, San Antonio, USA

  • [8] P.V. Aravind, J.P. Ouweltjes, N. Woudstra, G. Rietveld, The 6th European Fuel Cell Forum (SOFC), 3–7 July 2004, Lucerne, Switzerland

  • [9] O.A. Marina, L.R. Pederson, C.A. Coyle, et al., J. Power Sources 196, 636 (2011)

  • [10] W.Z. Zhu, S.C. Deevi, Mater. Sci. Eng. A362, 228 (2003)

  • [11] M.V. Rao, PhD thesis (Stuttgard University, Germany, 2006)

  • [12] L. Yang, Z. Cheng, M. Liu, L. Wilson, Energy Environ. Sci. 3, 1804 (2010)

  • [13] K. Sasaki, K. Haga, T. Yoshizumi, D. Minematsu, E. Yuki, R. Liu, Ch. Uryu, T. Oshima, T. Ogura, Y. Shiratori, K. Ito, J. Power Sources 196, 9130 (2011)

  • [14] J.P. Trembly, A.I. Marquez, T.R. Ohrn, D.J. Bayless, J. Power Sources 158, 263 (2006)

  • [15] A.I. Marquez, T.R. Ohrn, J.P. Tremby, D.C. Ingram, D.J. Bayless, J. Power Sources 164, 659 (2007)

  • [16] M. Gong, X. Liu, J. Trembly, Ch. Johnson, J. Power Sources 168, 289 (2007)

  • [17] S.K. Schubert, M. Kusnezoff, Ch. Wunderlich, The 8th European Fuel Cell Forum (SOFC), 30 June–4 July 2008, Lucerne, Switzerland

  • [18] J.F.B. Rasmussen, A. Hagen, J. Power Sources 191, 534 (2009)

  • [19] A. Hagen, J.F.B. Rasmussen, K. Thyden, J. Power Sources 196, 7271 (2011)

  • [20] T.S. Li, Ch. Xu, T. Chen, H. Miao, W.G. Wang, J. Solid State Electroch. 15, 1077 (2011)

  • [21] J.P. Trembly, R.S. Gemmen, D.J. Bayless, J. Power Sources 169, 347 (2007)

  • [22] J.E. Bao, N. Gopala, P.J. Krishnan, J. Perez-Mariano, A. Sanjurj, J. Power Sources 193, 607 (2009)


Journal + Issues