In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines

Evangelos Gkanas
  • 1 Environmental Technology Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Agia Paraskevi, Athens, 15310, Greece
  • 2 Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110, Greece

Abstract

In the current work, iron oxide magnetic nanoparticles (MNP’s) were synthesized by thermal decomposition of Fe(acac)3-(iron acetylacetonate) compounds in high-boiling organic solvents containing stabilizing surfactants and examined as possible agents for magnetic hyperthermia treatment, according to their structural, magnetic and heating properties. Three different cancer cell lines (DA3, MCF-7 and HeLa cell lines) were used to assess the suitability of the MNP’s. The experimental results proved that the synthesized MNPs are non-toxic and the uptake efficiency was extremely good. Further, from in vitro hyperthermia results, very fast thermal response was observed (reaching hyperthermia levels in less than 200 s), which minimize the duration of the cell and human body exposure in a high frequency AC external magnetic field.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Q. A. Pankhurst, N.K.T Thanh, S.K Jones, J. Dobson, J. Phys. D, 42, 224 (2009). http://dx.doi.org/10.1088/0022-3727/42/22/224001

  • [2] K. Tanaka, A. Ito, T. Kobayashi, T. Kawamura, S. Shimada, K. Matsumoto, T. Saida, H. Honda, J Sc. Bioengineering, 100, 112 (2005) http://dx.doi.org/10.1263/jbb.100.112

  • [3] M. Liangruksa, R. Ganguly, I.K. Puri, J. Magn. Magn. Mater. 323, 708 (2011) http://dx.doi.org/10.1016/j.jmmm.2010.10.027

  • [4] Y. Ebisawa, F. Miyaji, T. Kokubo, K. Ohura, T. Nakamura, Biomaterials 18, 1277 (1997) http://dx.doi.org/10.1016/S0142-9612(97)00067-7

  • [5] W.C. Dewey, Cancer Res. 44, 4714 (1984)

  • [6] S. Nagarajan, Z. Yong, Recent Patents Biomed. Eng. 1, 34 (2008) http://dx.doi.org/10.2174/1874764710801010034

  • [7] I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mat. 324, 903 (2012) http://dx.doi.org/10.1016/j.jmmm.2011.10.017

  • [8] S. Cascinu, V. Catalano, A.M. Baldelli, M. Scartozzi, N. Battelli, F. Craziano, R. Cellerino, Cancer Treatment Reviews 24(1), 3 (2008) http://dx.doi.org/10.1016/S0305-7372(98)90067-6

  • [9] A. Jordan, R. Scholz, P. Wust, H. Fakhling, J. Magn. Magn. Mater. 201, 413 (1999) http://dx.doi.org/10.1016/S0304-8853(99)00088-8

  • [10] S.S. Challa, R. Kumar, F. Mohammad, Advanced Drug Delivery Reviews 63, 789 (2011) http://dx.doi.org/10.1016/j.addr.2011.03.008

  • [11] G.P. Raaphorst, M.L. Freeman, W.C. Dewey, Radiat. Res. 79, 390 (1979) http://dx.doi.org/10.2307/3575104

  • [12] R. Massart, IEEE Trans. Magn. MAG-17, 1247 (1981)

  • [13] R. Kaiser, G. Miskolczy, J. Appl. Phys. 41, 1064 (1970) http://dx.doi.org/10.1063/1.1658812

  • [14] J-K Yang, J-H Yu, J. Kim, Y-H Choa, Mat. Sc. Engineering A 449–451, 477 (2007) http://dx.doi.org/10.1016/j.msea.2006.02.336

  • [15] T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. Metzler-Nolte, K. Tohji, J. van Balachandran, J. Magn. Magn. Mater 323, 1216 (2011) http://dx.doi.org/10.1016/j.jmmm.2010.11.009

  • [16] P. Moroz, S.K. Jones, B.N. Gray, J. Surg. Oncol. 77, 259 (2001) http://dx.doi.org/10.1002/jso.1106

  • [17] R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Ann. Surg. 146, 596 (1957) http://dx.doi.org/10.1097/00000658-195710000-00007

  • [18] R. Hergt, W. Andra, C. D’Ambly, IEEE Transactions on Magnetics 34, 3745 (1998) http://dx.doi.org/10.1109/20.718537

  • [19] J.R. Oleson, IEEE Trans. Biomed. Eng. 1, 91 (1984) http://dx.doi.org/10.1109/TBME.1984.325374

  • [20] R.T. Gordon, J.R. Hines, D. Gordon, Med. Hypotheses 5, 83 (1979) http://dx.doi.org/10.1016/0306-9877(79)90063-X

  • [21] D. Bahadur, J. Giri, Biomaterials and magnetism, Sadhana 28, 639 (2003) http://dx.doi.org/10.1007/BF02706451

  • [22] M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 7, 1 (2010) http://dx.doi.org/10.1007/BF03245856

  • [23] I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54, 631 (2002) http://dx.doi.org/10.1016/S0169-409X(02)00044-3

  • [24] E. Natividad, M. Castro, A. Mediano, J. Magn. Magn. Mater. 321, 1497 (2009) http://dx.doi.org/10.1016/j.jmmm.2009.02.072

  • [25] P. Tartaj, J. Phys. D: Appl. Phys. 36, (2003)

  • [26] A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, M.E. McHenry, J. App. Physics 103(7) (2008)

  • [27] R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002) http://dx.doi.org/10.1016/S0304-8853(02)00706-0

  • [28] B. Jeyadevan, Soc. Jpn. 118, 391 (2010)

  • [29] T. Hosono, H. Takahashi, A. Fujita, R.J. Joseyphus, K. Tohji, B. Jeyadevan, J. Magn. Magn. Mater 321, 3019 (2009) http://dx.doi.org/10.1016/j.jmmm.2009.04.061

  • [30] R. Hergt, S. Dutz, R. Muller, M. Zeisberger, J. Phys.: Condens. Matter 18, 2919 (2006) http://dx.doi.org/10.1088/0953-8984/18/38/S26

  • [31] S. Maenosono, S. Saita, IEEE Transactions on Magnetics 42, 1638 (2006) http://dx.doi.org/10.1109/TMAG.2006.872198

  • [32] B.A. Bornstein, P.S. Zouranjian, J.L. Hansen, S.M. Fraser, L.A. Gelwan, B.A. Teicher, G.K. Svensson, J. Radiat. Oncol. Biol. Phys. 25, 79 (1993) http://dx.doi.org/10.1016/0360-3016(93)90148-O

  • [33] R. Hergt, W. Andrä, in W. Andrä, H. Nowak (Eds.), Magnetic Hyperthermia and Thermoablation, Magnetism in Medicine: A Handbook, 2nd edition (Wiley-VCH, Berlin, 2006) 550

  • [34] G.T. Landi, J. Magn. Magn. Mater. 326, 14 (2013) http://dx.doi.org/10.1016/j.jmmm.2012.08.034

  • [35] L.-Y. Zhang, H.-Ch. Gu, X.-M. Wang, J. Magn. Magn. Mater. 311, 228 (2007) http://dx.doi.org/10.1016/j.jmmm.2006.11.179

  • [36] G. Glockl, R. Hergt, M. Zeisberger, et al., J. Phys.: Condens. Matter. 18, 2935 (2006) http://dx.doi.org/10.1088/0953-8984/18/38/S27

  • [37] S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Advances in Colloid and Interface Science 166, 8 (2011)

  • [38] Van den Berg, L.W Bartels, A.C. De Leeuw, J.W. Lagendijk, J.B. Van de Kamer, Phys. Med. Biol. 49, 5029 (2004) http://dx.doi.org/10.1088/0031-9155/49/22/001

  • [39] L.M. Falikov, D.T. Pierce, S.D. Bader, R. Gronsky, K.B. Hathaway, H.J. Hopster, D.N. Lambeth, S.P. Parkin, G. Prinz, M. Salamonl, J. Mater. Res. 5, 1299 (1990) http://dx.doi.org/10.1557/JMR.1990.1299

  • [40] S. Ni, X. Wang, G. Zhou, F. Yang, J. Wang, Q. Wang, D. He, J. Alloys Comp. 505, 727 (2010) http://dx.doi.org/10.1016/j.jallcom.2010.06.126

  • [41] V. Sagredo, O. Pena, T.E. Torres, A. Loaiza-Gil, M. Villarroel, M. de la Cruz, J. Balbuena, J. Physics: Conference Series 200, 072082 (2010) http://dx.doi.org/10.1088/1742-6596/200/7/072082

  • [42] P. Fejes, V. Kis, K. Lazar, I. Marsi, J.B. Nagry, Microporous and mesoporous materials 112, 377 (2008) http://dx.doi.org/10.1016/j.micromeso.2007.10.014

  • [43] T. Tsoncheva, J. Rosenholm, M. Linden, F. Kleitz, M. Tiemann, L. Ivanova, M. Dimitrov, D. Paneva, I. Mitov, C. Minchev, Microporous and Mesoporous Materials 112, 327 (2008) http://dx.doi.org/10.1016/j.micromeso.2007.10.005

  • [44] S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, G. Piccaluga, S. Solinas, NanoStructured Materials 11, 573 (1999) http://dx.doi.org/10.1016/S0965-9773(99)00335-9

  • [45] P. Moodley, F.J.E. Scheijen, J.W. Niemantsverdriet, P.C. Thun, Catalysis Today 154, 142 (2010) http://dx.doi.org/10.1016/j.cattod.2010.03.020

  • [46] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Society 126, 273 (2004) http://dx.doi.org/10.1021/ja0380852

  • [47] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, J. Am. Chem. Society 123, 12798 (2001) http://dx.doi.org/10.1021/ja016812s

  • [48] S.H. Sun, H. Zeng, J. Am. Chem. Society 124, 8204 (2002) http://dx.doi.org/10.1021/ja026501x

  • [49] D. Li, D. Jiang, M. Chen, J. Xie, Y. Wu, S. Dang, J. Zhang, Materials Letters 64, 2462 (2010) http://dx.doi.org/10.1016/j.matlet.2010.08.025

  • [50] K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Bellesi, P. Novak, D. Petridis, Biomaterials 30, 2855 (2009) http://dx.doi.org/10.1016/j.biomaterials.2009.02.023

  • [51] M.H. Habibi, N. Kiani, J. Therm. Anal. Calorim., DOI 10.1007/s10973-012-2571-4

  • [52] A. Urtizberea, E. Natividad, A. Arizaga, M. Castro, A. Mediano Heredia, J. Phys. Chem. Am. Chem. Society 114, 4916 (2010)

  • [53] V. Vichai, K. Kirtikara, Nature Protocols 1, 1112 (2006) http://dx.doi.org/10.1038/nprot.2006.179

  • [54] K.T. Papazisis, G.D. Geromichalos, K.A. Dimitriadis, A.H. Kortsaris, J. Immunological Methods 208, 151 (1997) http://dx.doi.org/10.1016/S0022-1759(97)00137-3

  • [55] F.M. Freimoser, C.A. Jakob, M. Aebi, U. Tuor, Appl. Environ. Microbiol. 65, 3727 (1999)

  • [56] D.M.L. Morgan, Methods in Molecular Biology 79, 179 (1997)

  • [57] M. Calmon, A.T. de Souza, N.M. Candido, M.I.B. Raposo, S. Taboga, P. Rahal, J.G. Nery, Colloids and Surfaces B: Biointerfaces 100, 177 (2012) http://dx.doi.org/10.1016/j.colsurfb.2012.05.026

  • [58] K. Aljarrah, N.M. Mhaidat, M-Ali H. Al-Akhras, A.N. Aldaher, B.A Albiss, K. Aledealat, F.M. Alsheyab, World Journal of Surgical Oncology 10, 62 (2012) http://dx.doi.org/10.1186/1477-7819-10-62

  • [59] C. Wilhelm, J.P. Fortin, F. Gazeau, J. Nanosci. Nanotechnol. 7, 2933 (2007) http://dx.doi.org/10.1166/jnn.2007.668

  • [60] A. Villanueva, P. de la Presa, J. M. Alonso, T. Rueda, A. Martínez, P. Crespo, M.P. Morales, M.A. Gonzalez-Fernandez, J. Valdés, G. Rivero, J. Phys. Chem. C 114, 1976 (2010) http://dx.doi.org/10.1021/jp907046f

OPEN ACCESS

Journal + Issues

Search