Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 26, 2013

Microwave-assisted and conventional sol-gel preparation of photocatalytically active ZnO/TiO2/glass multilayers

  • Nina Kaneva EMAIL logo , Irina Stambolova , Vladimir Blaskov , Alexander Eliyas and Sasho Vassilev
From the journal Open Chemistry

Abstract

For the first time a combination of microwaves and/or the conventional treatment method was used to dry and heat multilayered sol-gel ZnO/TiO2/glass structures. Compact or porous TiO2 films were deposited as a bottom layer, covered with a ZnO film. The structures were characterized by X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM). Only peaks of wurtzite ZnO crystalline phase were registered on the X-Ray diffractograms. The microwave irradiation leads to a formation of poorly crystallized multilayers with very small crystallites and enhanced surface roughness. This results in a better photocatalytic activity of these structures than the structures of the samples treated conventionally. It was established that the morphology of the bottom titania layer affects the reaction of photocatalytic degradation of Malachite Green dye (MG). The structures with the compact bottom TiO2 films showed higher activities than those on porous TiO2 films. This study offers an energy saving method of producing ZnO/TiO2/glass multilayered structures of various morphologies and pronounced photocatalytic properties. The method does not involve any calcination step, normally applied to achieve a good degree of crystallization. This makes the method suitable for protecting substrates of low thermal stability.

[1] X. Ma, P. Chen, D. Li, Y. Zhang, D. Yang, Appl. Phys. Lett. 91, 251109 (2007) http://dx.doi.org/10.1063/1.282654310.1063/1.2826543Search in Google Scholar

[2] Y. Liu, A. Liu, W. Liu, Z. Hu, Y. Sang, Appl. Surf. Sci. 257, 1263 (2010) http://dx.doi.org/10.1016/j.apsusc.2010.08.04010.1016/j.apsusc.2010.08.040Search in Google Scholar

[3] D. Zhang, D. Brodie, Thin Solid Films 261, 334 (1995) http://dx.doi.org/10.1016/S0040-6090(94)06536-510.1016/S0040-6090(94)06536-5Search in Google Scholar

[4] I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, Ts. Tsacheva, Mater. Chem. Phys. 63, 104 (2000) http://dx.doi.org/10.1016/S0254-0584(99)00193-510.1016/S0254-0584(99)00193-5Search in Google Scholar

[5] J. Lee, D. Lee, D. Lim, K. Yang, Thin Solid Films 515, 6094 (2007) http://dx.doi.org/10.1016/j.tsf.2006.12.09910.1016/j.tsf.2006.12.099Search in Google Scholar

[6] Z. Bahsi, A. Oral, Opt. Mater. 29, 672 (2007) http://dx.doi.org/10.1016/j.optmat.2005.11.01610.1016/j.optmat.2005.11.016Search in Google Scholar

[7] M. Yeber, J. Rodriguez, J. Freer, N. Duran, H. Mansilla, Chemosphere 41, 1193 (2000) http://dx.doi.org/10.1016/S0045-6535(99)00551-210.1016/S0045-6535(99)00551-2Search in Google Scholar

[8] M. Hoffmann, S. Martin, W. Choi, D. Bahnemann, Chem Rev. 95, 69 (1995) http://dx.doi.org/10.1021/cr00033a00410.1021/cr00033a004Search in Google Scholar

[9] A. Fujishima, T. Rao, D. Tryk, J. Photochem. Photobiol. C 1, 1 (2000) http://dx.doi.org/10.1016/S1389-5567(00)00002-210.1016/S1389-5567(00)00002-2Search in Google Scholar

[10] N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 162, 317 (2004) http://dx.doi.org/10.1016/S1010-6030(03)00378-210.1016/S1010-6030(03)00378-2Search in Google Scholar

[11] D. Liao, C. Badour, B. Liao, J. Photochem. Photobiol. A 194, 11 (2008) http://dx.doi.org/10.1016/j.jphotochem.2007.07.00810.1016/j.jphotochem.2007.07.008Search in Google Scholar

[12] W. Wu, Y. Cai, J. Chen, S. Shen, J. Mater. Sci. 41, 5845 (2006). http://dx.doi.org/10.1007/s10853-006-0288-010.1007/s10853-006-0288-0Search in Google Scholar

[13] S. Darzi, A. Mahjoub, J. Alloys Comp. 480, 805 (2009) http://dx.doi.org/10.1016/j.jallcom.2009.07.07110.1016/j.jallcom.2009.07.071Search in Google Scholar

[14] G. Marci, V. Augugliano, M. Lopez-Munos, L. Palmisano, V. Rives, M. Schiavello, R. Tilley, A. Venezia, J. Phys.Chem. B 105, 1033 (2001) http://dx.doi.org/10.1021/jp003173j10.1021/jp003173jSearch in Google Scholar

[15] Z. Zhang, Y. Yuan, Y. Fang, L. Liang, H. Ding, L. Jin, Talanta 73, 523 (2007) http://dx.doi.org/10.1016/j.talanta.2007.04.01110.1016/j.talanta.2007.04.011Search in Google Scholar PubMed

[16] J.T. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu, Surf. Coat. Technol. 204, 205 (2009) http://dx.doi.org/10.1016/j.surfcoat.2009.07.00810.1016/j.surfcoat.2009.07.008Search in Google Scholar

[17] L. Zhao, M. Xia, Y. Liu, B. Zheng, Q. Jiang, J. Lian, Materials Transactions 53, 463 (2012) http://dx.doi.org/10.2320/matertrans.M201134510.2320/matertrans.M2011345Search in Google Scholar

[18] L. Zhao, M. Xia, Y. Liu, B. Zheng, Q. Jiang, J. Lian, J. Cryst. Growth 344, 1 (2012) http://dx.doi.org/10.1016/j.jcrysgro.2012.01.04010.1016/j.jcrysgro.2012.01.040Search in Google Scholar

[19] S. Liu, J. Wightman, J. Appl. Chem. Biotechnol. 21, 168 (1971) http://dx.doi.org/10.1002/jctb.502021060510.1002/jctb.5020210605Search in Google Scholar

[20] J. Baldassari, S. Komarneni, E. Mariani, C. Villa, Mater. Res. Bull. 40, 2014 (2005) http://dx.doi.org/10.1016/j.materresbull.2005.05.02310.1016/j.materresbull.2005.05.023Search in Google Scholar

[21] Y. Fang, J. Cheng, R. Roy, D. Roy, D. Agrawal, J. Mater Sci. 32, 4925 (1997) http://dx.doi.org/10.1023/A:101862422390910.1023/A:1018624223909Search in Google Scholar

[22] E. Thostenson, T. Chou, Composites, Part A 30, 1055 (1999) http://dx.doi.org/10.1016/S1359-835X(99)00020-210.1016/S1359-835X(99)00020-2Search in Google Scholar

[23] A. Peiro, C. Domingo, J. Peral, X. Domenech, E. Vigil, M. Hernandez-Fenollosa, M. Mollar, B. Mari, J. Ayllon, Thin Solid Films 483, 79 (2005) http://dx.doi.org/10.1016/j.tsf.2004.12.03010.1016/j.tsf.2004.12.030Search in Google Scholar

[24] E. Vigil, J. Ayllon, A. Peiro, R. Rodriguez-Clemente, X. Domenech, J. Peral, Langmuir 17, 891 (2001) http://dx.doi.org/10.1021/la000945u10.1021/la000945uSearch in Google Scholar

[25] A. Peiro, E. Vigil, J. Peral, C. Domingo, X. Domenech, J. Ayllon, Thin Solid Films 411, 185 (2002) http://dx.doi.org/10.1016/S0040-6090(02)00276-610.1016/S0040-6090(02)00276-6Search in Google Scholar

[26] H. Zabova, J. Sobek, V. Cirkova, O. Solcova, S. Kment, M. Hajek, J. Solid State Chem. 182, 3387 (2009) http://dx.doi.org/10.1016/j.jssc.2009.09.03310.1016/j.jssc.2009.09.033Search in Google Scholar

[27] D.W. Kim, S. Lee, H.S. Jing, J. Kim, H. Shin, K.S. Hong, Int. J. Hydr. Energy 32, 3137 (2007) http://dx.doi.org/10.1016/j.ijhydene.2005.12.02310.1016/j.ijhydene.2005.12.023Search in Google Scholar

[28] M. Masahiko, H. Kenichi, Appl. Catal. A 302, 305 (2006) http://dx.doi.org/10.1016/j.apcata.2006.01.03210.1016/j.apcata.2006.01.032Search in Google Scholar

[29] H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, J Phys. Chem. B 104, 4586 (2000) http://dx.doi.org/10.1021/jp000049r10.1021/jp000049rSearch in Google Scholar

[30] T. Kawahara, Y. Konishi, H. Tada, N. Tohge, S. Ito, Langmuir 17, 7442 (2001) http://dx.doi.org/10.1021/la010307r10.1021/la010307rSearch in Google Scholar

[31] N. Kaneva, C. Dushkin, Bulg. Chem. Comm. 43, 259 (2011) Search in Google Scholar

[32] M. Hajek, In: A. Loupy (Ed.), Microwaves catalysis in organic synthesis, Microwaves in Organic Synthesis (Wiley-VCH Verlag, Weinheim, Germany, 2006) chapter 13, p. 615–652 10.1002/9783527619559.ch13Search in Google Scholar

[33] P.A. Thiessen, K. Meyer, Heinlicke Grundlagen der Tribochemie (Akad. Wiss. Berlin, Kl.Chem., Geol., Biol., Berlin, 2006) Search in Google Scholar

[34] N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, S. Vassilev, C. Dushkin, J. Alloys Comp. 500, 252 (2010) http://dx.doi.org/10.1016/j.jallcom.2010.04.02010.1016/j.jallcom.2010.04.020Search in Google Scholar

[35] N. Kaneva, D. Dimitrov, C. Dushkin, Appl. Surf. Sci. 257, 8113 (2011) http://dx.doi.org/10.1016/j.apsusc.2011.04.11910.1016/j.apsusc.2011.04.119Search in Google Scholar

[36] Y. Gui, Sh. Li, J. Xu, Ch. Li, Microelectronics Journal 39, 1120 (2008) http://dx.doi.org/10.1016/j.mejo.2008.01.05210.1016/j.mejo.2008.01.052Search in Google Scholar

[37] J. Liu, J. Cao, Z. Li, G. Ji, M. Cheng, Mater. Lett. 61, 4409 (2007) http://dx.doi.org/10.1016/j.matlet.2007.02.01410.1016/j.matlet.2007.02.014Search in Google Scholar

[38] C.W. Zou, X.D. Yan, J. Han, R.Q. Chen, J.M. Bian, E. Haemmerle, W. Gao, Chem. Phys. Lett. 476, 84 (2009) http://dx.doi.org/10.1016/j.cplett.2009.06.02410.1016/j.cplett.2009.06.024Search in Google Scholar

[39] D. Robert, A. Piscopo, O. Heintz, J. Weber, Catal. Today 54, 291 (1999) http://dx.doi.org/10.1016/S0920-5861(99)00190-X10.1016/S0920-5861(99)00190-XSearch in Google Scholar

[40] C. Su, B. Hong, C-M. Tseng, Catal. Today 96, 119 (2004) http://dx.doi.org/10.1016/j.cattod.2004.06.13210.1016/j.cattod.2004.06.132Search in Google Scholar

[41] C. Guillard, B. Beaugiraud, C. Dutriez, J. Herrmann, H. Jaffrezic, N.J. Renault, M. Lacroix, Appl. Catal. B 39, 331 (2002) http://dx.doi.org/10.1016/S0926-3373(02)00120-010.1016/S0926-3373(02)00120-0Search in Google Scholar

[42] M. Benmami, K. Chhor, A. Kanaev, Chem.Phys. Lett. 422, 552 (2006) http://dx.doi.org/10.1016/j.cplett.2006.03.00110.1016/j.cplett.2006.03.001Search in Google Scholar

[43] A. López, D. Acosta, A.I. Martínez, J. Santiago, Powder Technology 202, 111 (2010) http://dx.doi.org/10.1016/j.powtec.2010.04.02510.1016/j.powtec.2010.04.025Search in Google Scholar

Published Online: 2013-4-26
Published in Print: 2013-7-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0240-5/html
Scroll to top button