Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite

Alin Druc 1 , Anca Dumitrescu 1 , Adrian Borhan 1 , Valentin Nica 2 , Alexandra Iordan 1 , and Mircea Palamaru 1
  • 1 Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iasi, 700506, Romania
  • 2 Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, 700506, Romania

Abstract

Nano-sized magnesium ferrites were synthesized by the sol-gel auto-combustion method using a variety of chelating/combustion agents: tartaric acid, citric acid, cellulose, glycine, urea and hexamethylenetetramine. The original purpose of this work was the synthesis of nano-sized magnesium ferrite by using, for the first time, cellulose and hexamethylenetetramine as chelating/combustion agents. Synthesized samples were subjected to different heat treatments at 773 K, 973 K and, respectively 1173 K in air. The disappearance of the organic phase and nitrate phase with the spinel structure formation was monitored by infrared absorption spectroscopy. Spinel structure, crystallite size and cation distribution were evaluated by X-ray diffraction data. The morphology of as-prepared powders was studied using scanning electron microscopy. The magnetic and dielectric properties were studied for the obtained samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Ceram. Int. 36, 275 (2010) http://dx.doi.org/10.1016/j.ceramint.2009.07.023

  • [2] K. Konishi, T. Maehara, T. Kamimori, H. Aono, T. Naohara, H. Kikkawa, Y. Watanabe, K. Kawachi, J. Magn. Magn. Mater. 272, 2428 (2004) http://dx.doi.org/10.1016/j.jmmm.2003.12.591

  • [3] C.J. Jia, Y. Liu, M. Schwickardi, C. Weidenthaler, B. Spliethoff, W. Schmidt, F. Schüth, Appl. Catal. A — Gen. 386 94 (2010) http://dx.doi.org/10.1016/j.apcata.2010.07.036

  • [4] Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Sensor. Actuat. B — Chem. 107, 600 (2005) http://dx.doi.org/10.1016/j.snb.2004.11.026

  • [5] H. Okawa, J.H. Lee, T. Hotta, S. Ohara, S. Takahashi, T. Shibahashi, Y. Yamamasu, J. Power Sources 131, 251 (2004) http://dx.doi.org/10.1016/j.jpowsour.2003.11.092

  • [6] V. Šepelák, D. Baabe, F.J. Litterst, K.D. Becker, J. Appl. Phys. 88, 5884 (2000) http://dx.doi.org/10.1063/1.1316048

  • [7] Q. Chen, Z.J. Zhang, Appl. Phys. Lett. 73, 3156 (1998) http://dx.doi.org/10.1063/1.122704

  • [8] S. Verma, P.A. Joy, Y.B Khollam, H.S. Potdar, S.B. Deshpande, Mater. Lett. 58, 1092 (2004) http://dx.doi.org/10.1016/j.matlet.2003.08.025

  • [9] R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, E. Longo, Mater. Res. Bull. 41, 183 (2006) http://dx.doi.org/10.1016/j.materresbull.2005.07.019

  • [10] S.A. Oliver, R.J. Willey, H.H. Hamdeh, G. Oliveri, G. Busca, Scr. Metall. Mater. 33, 1695 (1995) http://dx.doi.org/10.1016/0956-716X(95)00412-O

  • [11] P. Holec, J. Plocek, D. Nižňanský, J.P. Vejpravová, J. Sol-Gel Sci. Techn. 51, 301 (2009) http://dx.doi.org/10.1007/s10971-009-1962-x

  • [12] H. Aono, H. Hirazawa, T. Naohara, T. Maehara, Appl. Surf. Sci. 254, 2319 (2008) http://dx.doi.org/10.1016/j.apsusc.2007.09.024

  • [13] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Magn. Magn. Mater. 320, 2774 (2008) http://dx.doi.org/10.1016/j.jmmm.2008.06.012

  • [14] R.D. Waldron, Phys. Rev. 99, 1727 (1955) http://dx.doi.org/10.1103/PhysRev.99.1727

  • [15] A.M. Shaikh, S.A. Jadhav, S.C. Watawe, B.K. Chougule, Mater. Lett. 44, 192 (2000) http://dx.doi.org/10.1016/S0167-577X(00)00025-2

  • [16] H.St.C. O’Neill, H. Annersten, D. Virgo, Am. Mineral. 77, 725 (1992)

  • [17] A.T. Raghavender, K.M. Jadhav, Bull. Mater. Sci. 32, 575 (2009) http://dx.doi.org/10.1007/s12034-009-0087-8

  • [18] J. Podwórny, J. Piotrowski, J. Wojsa, Ceram. Int. 34, 1587 (2008) http://dx.doi.org/10.1016/j.ceramint.2007.04.019

  • [19] I. Bergmann, V. Šepelák, K.D. Becker, Solid State Ionics 177, 1865 (2006) http://dx.doi.org/10.1016/j.ssi.2006.04.002

  • [20] V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Solid State Sci. 13, 539 (2011) http://dx.doi.org/10.1016/j.solidstatesciences.2010.12.023

  • [21] D.J. Epstein, B. Frackiewicz, J. Appl. Phys. 29, 376 (1958) http://dx.doi.org/10.1063/1.1723141

  • [22] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Alloys Compd. 509, 3917 (2011) http://dx.doi.org/10.1016/j.jallcom.2010.12.168

  • [23] V. Naidu, S. Vijayaragavan, R. Legadevi, A.S. Kumar, Int. J. Comput. Appl. 30, 13 (2011)

  • [24] Y. Huang, Y. Tang, J. Wang, Q, Chen, Mater. Chem. Phys. 97, 394 (2006) http://dx.doi.org/10.1016/j.matchemphys.2005.08.035

  • [25] P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, P.D. Lokhande, K.M. Adhav, R. Sasikala, J. Solid State Chem. 182, 3217 (2009) http://dx.doi.org/10.1016/j.jssc.2009.08.034

  • [26] L. Gama, E.P. Hernandez, D.R. Cornejo, A.A. Costa, S.M. Rezende, R.H.G.A. Kimimami, A.C.F.M. Costa, J. Magn. Mater. 317, 29 (2007) http://dx.doi.org/10.1016/j.jmmm.2007.04.007

  • [27] S.H. Patil, S.I. Patil, S.M. Kadam, S-R. Patil, B.K. Chougule, Bull. Mater. Sci. 14, 1225 (1991) http://dx.doi.org/10.1007/BF02744616

  • [28] A.K. Ghatage, S.C. Choudhary, S.A. Patil, J. Mater. Sci. Lett. 15, 1548 (1996) http://dx.doi.org/10.1007/BF00625019

  • [29] C.G. Koops, Phys. Rev. 83, 121 (1951) http://dx.doi.org/10.1103/PhysRev.83.121

  • [30] D. Ravinder, K.V. Kumar, Bull. Mater. Sci. 24, 505 (2001) http://dx.doi.org/10.1007/BF02706722

OPEN ACCESS

Journal + Issues

Search