In vitro bioactivity of Polyurethane/85S Bioglass composite scaffolds

Lachezar Radev 1 , Darina Zheleva 2 , and Irena Michailova 3
  • 1 Department of Fundamental Chemical Technology, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
  • 2 Textile and Leather Department, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
  • 3 Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria

Abstract

In the present work Polyurethane (PU)/Bioglass (BG) composite materials were synthesized with different content of BG (10 and 20 mol.%) as filler. The 85S Bioglass was synthesized via polystep sol-gel method. The chemical composition of BG is 85SiO2-10CaO-5P2O5 (wt.%). The synthesis of PU was carried out by a two-step polyaddition reaction. The 85S BG was added in situ during the polymerization reaction. In vitro bioactivity of the prepared composites was examined in the presence of 1.5 SBF for 7 days in static conditions. The structure of synthesized PU/BG composites before and after in vitro test was determined by XRD, FTIR and SEM. XRD of the samples before in vitro test proved that the phase of γCa2P2O7 in the PU/20BG is visible. FTIR revealed the presence of urethane bond between OH-(from BG) and NCO groups (from PU). Based on FTIR results after in vitro test in 1.5 SBF solutions, A/B-carbonate containing hydroxyapatite (CO3HA) was formed. XRD proved that HA was formed on the surface of the samples, but Ca2P2O7 does not undergo any changes in the 1.5 SBF solution. SEM depicted the nano-HA agglomerated in spherical particles after immersion in 1.5 SBF for 7 days.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Boccaccini et al., Comp. Sci. Techn. 70, 1764 (2010) http://dx.doi.org/10.1016/j.compscitech.2010.06.002

  • [2] D.C. Fredericks et al., Key Eng. Mater. 218–220, 409 (2002) http://dx.doi.org/10.4028/www.scientific.net/KEM.218-220.409

  • [3] C.E. Wilson et al., Biomaterials 27(3), 302 (2006) http://dx.doi.org/10.1016/j.biomaterials.2005.06.041

  • [4] D. Arcos et al., Acta Biomaterialia 7(7), 2952 (2011) http://dx.doi.org/10.1016/j.actbio.2011.02.012

  • [5] M. Alcaide et al., Acta Biomaterialia 6(3), 892 (2010) http://dx.doi.org/10.1016/j.actbio.2009.09.008

  • [6] H-S. Yun, J-W. Park, S-H. Kim, Y-J. Kim, J-H. Jang, Acta Biomaterialia 7, 2651 (2011) http://dx.doi.org/10.1016/j.actbio.2011.02.014

  • [7] A. Garca, M. Cicundez, I. Izquierdo-Barba, D. Arcos, Chem. Mater. 21(22) 5474 (2009) http://dx.doi.org/10.1021/cm9022776

  • [8] F. Baino, E. Verné, Ch. Vitale-Brovarone, J. Mater. Sci.: Mater. Med. 20, 2189 (2009) http://dx.doi.org/10.1007/s10856-009-3787-0

  • [9] K. Bouchemal et al., International Journal of Pharmaceutics 269(1), 89 (2004) http://dx.doi.org/10.1016/j.ijpharm.2003.09.025

  • [10] M. Bil et al., Biomed. Mater. 2(2), 93 (2007) http://dx.doi.org/10.1088/1748-6041/2/2/006

  • [11] M.-N. Huang, Y.-L. Wang, Y.-F. Luo, J. Biomed. Sci. Eng. 2, 36 (2009) http://dx.doi.org/10.4236/jbise.2009.21007

  • [12] D.M. Yunos, O. Bretcanu, A.R. Boccaccini, J. Mater. Sci. 43, 4433 (2008) http://dx.doi.org/10.1007/s10853-008-2552-y

  • [13] J.L. Ryszkowska, M. Auguścik, A. Sheikh, A.R. Boccaccini, Comp. Sci. Techn. 70, 1894 (2010) http://dx.doi.org/10.1016/j.compscitech.2010.05.011

  • [14] Zh. Dong, Y. Li, Q. Zou, Appl. Surf. Sci. 255(12), 6087 (2009) http://dx.doi.org/10.1016/j.apsusc.2009.01.083

  • [15] G. Ciobanu, D. Ignat, C. Luca, Chem. Bull. POLITECHNIKA Univ. Timisoara, 54(68), 57 (2009)

  • [16] A. Asefnejad, A. Behnamghader, M. Khorasani, B. Farsadzadeh, Int. J. Nanomed. 6, 93 (2011) http://dx.doi.org/10.2147/IJN.S13385

  • [17] A.B. Martinez-Valencia et al., Int. J. Phys. Sci. 6(11), 2731 (2011)

  • [18] Q. Liu, J.R. Wijn, D. Bakker, C.A. Blitterswijk, J. Mater. Sci.: Mater. Med. 7(9), 551 (1996) http://dx.doi.org/10.1007/BF00122178

  • [19] G. Ch. Dong et al., Biomaterials 22(23), 3179 (2001) http://dx.doi.org/10.1016/S0142-9612(01)00070-9

  • [20] A.S. Khan et al., Acta Biomaterialia 4(5), 1275 (2008) http://dx.doi.org/10.1016/j.actbio.2008.04.016

  • [21] G. Falini, S. Fermani, B. Palazzo, N. Roveri, J. Biomed. Mater. Res. A87(2), 470 (2008) http://dx.doi.org/10.1002/jbm.a.31771

  • [22] K. Gorna, S. Gogolewski, Polym. Degrad. Stabil. 75(1), 113 (2002) http://dx.doi.org/10.1016/S0141-3910(01)00210-5

  • [23] E. Ayres, R.L. Oréfice, M.I. Yoshida, Eur. Polym. J. 43(8), 3510 (2007) http://dx.doi.org/10.1016/j.eurpolymj.2007.05.014

  • [24] G. Wang, Ch. Zhang, X. Guo, Zh. Ren, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 69(2), 407 (2008) http://dx.doi.org/10.1016/j.saa.2007.04.014

  • [25] J. Guan, M.S. Sacks, E.J. Beckman, W.R. Wagner, J. Biomed. Mater. Res., A 61(3), 493 (2002) (26) http://dx.doi.org/10.1002/jbm.10204

  • [26] A.K. Mishra, D.K. Chattopadhyay, B. Sreedhar, K. Raju, Prog. Org. Coat. 55(3), 231 (2006) http://dx.doi.org/10.1016/j.porgcoat.2005.11.007

  • [27] L-F. Wang, Polymer 48, 894 (2007) http://dx.doi.org/10.1016/j.polymer.2006.11.063

  • [28] Ch. Chen et al., Polymer 46, 11849 (2005) http://dx.doi.org/10.1016/j.polymer.2005.06.127

  • [29] M.J. Forrest, Chemical Chracterization of Polyurethanes (Papra Review Reports, UK, 2001)

  • [30] H. Aguiar, J. Serra, P. González, B. León, J. Non-Cryst. Solids 355, 475 (2009) http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.010

  • [31] F. Galeener, P.H. Gaskell, J.M. Parker, E.A. Davis, In: P.H. Gaskell, J.M. Parker, E.A. Davis (Eds.), The Structure of Non-Crystalline Materials (Taylor and Francis, London, 1982) 337

  • [32] J. Serra et al. J. Non-Cryst. Solids 332, 20 (2003) http://dx.doi.org/10.1016/j.jnoncrysol.2003.09.013

  • [33] H.Y. Jung et al., J. Non-Cryst Solids 351, 372 (2005) http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.004

  • [34] R.S. Pryce, L.L. Hench, J. Mater. Chem. 14, 2303 (2004) http://dx.doi.org/10.1039/b400922c

  • [35] E.SS. Jang et al., J. Chem. Soc. Pak. 33(4), 549 (2011)

  • [36] D. Tang, L. Quang, Zh. Jin, L. Zhao, J. Mater. Sci.Technol. 21(4), 58 (2005)

  • [37] Q. Zhao et al. J. Non-Cryst. Solids 358(2), 229 (2012) http://dx.doi.org/10.1016/j.jnoncrysol.2011.09.020

  • [38] N.S. Chickerur, M.S. Tung, W.E. Brown, Calcif. Tissue Int. 32(1), 55 (1980) http://dx.doi.org/10.1007/BF02408521

  • [39] H. Lin, W.-S. Seo, K. Kuwabara, K. Koumoto, J. Ceram. Soc. Jpn. 104(4), 291 (1996) http://dx.doi.org/10.2109/jcersj.104.291

  • [40] H. Ou-Yang, E.P. Paschalis, A.L. Boskey, R. Mendelsohn, Biopolymers 57(3), 129 (2000) http://dx.doi.org/10.1002/(SICI)1097-0282(2000)57:3<129::AID-BIP1>3.0.CO;2-O

  • [41] D.G. Nelson, J.D. Featherstone, Calcif. Tissue Int. 34, S69 (1982)

  • [42] P. Regnier et al., American Mineralogist 79, 809 (1994)

OPEN ACCESS

Journal + Issues

Search