Hydrogen bonding-based 3D supramolecular architecture of [Cu(CHA)2][TCM]·11H2O

Mihaela Vlassa 1 , Gheorghe Borodi 2 , Cristian Silvestru 3 ,  und Mircea Vlassa 4
  • 1 “Raluca Ripan” Institute of Research in Chemistry, Babeş-Bolyai University, 400294, Cluj-Napoca, Romania
  • 2 National Institute for Research and Development of Isotopic and Molecular Technologies — INCDTIM, 400293, Cluj-Napoca, Romania
  • 3 Department of Chemistry, Center of Supramolecular Organic and Organometallic Chemistry, Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028, Cluj-Napoca, Romania
  • 4 Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeş-Bolyai University, 400028, Cluj-Napoca, Romania

Abstract

Reaction of Na4TCM (1) (H4TCM = tetra[4-(carboxyphenyl)oxamethyl]methane) with [Cu(CHA)](ClO4)2 (2)(CHA = 1,3,6,8,11,14-hexaaz atricyclo[12.2.1.1.8,11] octadecane) in a DMF-water mixture yields [Cu(CHA)]2[TCM] (3). Structural analysis of [Cu(CHA)]2[TCM]·11H2O (3·11H2O) by single crystal X-ray diffraction reveals strong copper-oxygen bonds between two complex cations and the tetraanion leading to a 3D coordination network (zwitterionic structure), consolidated through additional NH...O=C hydrogen bonding within the cation/anion association. The resulting coordination geometry around a copper atom is a distorted square pyramidal with an oxygen atom of the anionic ligand in the apical position. A 3D supramolecular network is developed in the crystal based only on NH...OC hydrogen bonds between the macrocyclic metallic tecton and the carboxylate groups of neighboring 3D coordinated (zwitterionic) moieties. The pseudotetrahedral TCM4− tetraanionic ligand induces a diamondoid architecture formed of large distorted adamantanoid cages.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] M.P. Suh, Adv. Inorg. Chem. 44, 93 (1997) http://dx.doi.org/10.1016/S0898-8838(08)60129-4

  • [2] H. Kim, M. P. Suh, Inorg.Chem. 44, 810 (2005) http://dx.doi.org/10.1021/ic048869w

  • [3] Y.E. Cheon, M.P. Suh, Chem. Eur. J. 14, 3961 (2008) http://dx.doi.org/10.1002/chem.200701813

  • [4] H.R. Moon, M.P. Suh, Eur. J. Inorg. Chem. 3795 (2010)

  • [5] M.P Suh, Y.E. Cheon, Aust. J. Chem. 59, 605 (2006) http://dx.doi.org/10.1071/CH06016

  • [6] H-S. Choi, M.P. Suh, Angew. Chem. Int. Ed. 48, 6865 (2009) http://dx.doi.org/10.1002/anie.200902836

  • [7] Y-W. Ren, J. Li, S-M. Zhao, F-X. Zhang, Struct. Chem. 16, 439 (2005) http://dx.doi.org/10.1007/s11224-005-6353-5

  • [8] H. Jo, A.J. Lough, J. Ch. Kim, Inorg. Chim. Acta 358, 1274 (2005) http://dx.doi.org/10.1016/j.ica.2004.10.025

  • [9] Z.-H. Ni, A.-L. Cui, H.-Z. Kou, New. J. Chem. 30, 1327 (2006) http://dx.doi.org/10.1039/b605521d

  • [10] N. Morohashi, F. Naruni, H. Nobuhiko, T. Hattori, S. Miyano, Chem. Rev. 106, 5291 (2006) http://dx.doi.org/10.1021/cr050565j

  • [11] I.J. Clark, A. Crispini, P.S. Donnelly, L.M. Engelhardt, J.M. Harrowfield, S.-H. Jeong, Y. Kim, G.A. Koutsantonis, Y.H. Lee, N.A. Lengkeek, M. Mocerino, G.L. Nealon, M.I. Ogden, Y.C. Park, C. Pettinari, L. Polanzan, E. Rukmini, A.M. Sargeson, B.W. Skelton, A.N. Sobolev, P. Thuery, A.H. White, Aust. J. Chem. 62, 1246 (2009) http://dx.doi.org/10.1071/CH09356

  • [12] M. Du, Ch.-P. Li, Ch.-S. Liu, Sh.-M. Fang, Coord. Chem. Rev. 257, 1282 (2013) http://dx.doi.org/10.1016/j.ccr.2012.10.002

  • [13] X. Jiang, B. Tao, H. Xia, G.-y. Liao, Cryst. Eng. Comm. 14, 3271 (2112) http://dx.doi.org/10.1039/c2ce06494d

  • [14] M. Du, X.H. Bu, Y.M. Guo, H. Liu, S. R. Batten, J. Riabs, Th. C.W. Mak, Inorg. Chem. 41, 4904, (2002) http://dx.doi.org/10.1021/ic025559+

  • [15] M. Du, Y.-M. Guo, Sh.-T. Chen, X.-H. Bu, S. R. Batten, J. Ribas, S. Kitagawa, Inorg. Chem. 43, 1287, (2004). http://dx.doi.org/10.1021/ic0351242

  • [16] S. Hanessian, A. Gomtsyan, M. Simard, S. Roelens, J. Am. Chem. Soc. 116, 4495 (1994) http://dx.doi.org/10.1021/ja00089a056

  • [17] J. Granifo, M.T. Garland, R. Baggio, Inorg. Chem. Commun. 7, 77 (2004) http://dx.doi.org/10.1016/j.inoche.2003.10.009

  • [18] Y-C. Lewinski, J. Zachara, I. Justynick, M. Dranka, Coord. Chem. Rev. 24, 1185 (2005) http://dx.doi.org/10.1016/j.ccr.2004.11.013

  • [19] S.M.S.V. Wardell, M.V.N. de Souza, J.L. Wardell, J.N. Low, C. Glidewell, Acta Crystallogr. B 63, 879 (2007) http://dx.doi.org/10.1107/S0108768107036270

  • [20] K. Padayachy, M.A. Fernandes, H.M. Marques, A.S. de Sousa, J. Chem. Cryst. 38, 577 (2008) http://dx.doi.org/10.1007/s10870-008-9337-7

  • [21] C.J. Li, H. Liu, Y. Li, Pure Appl. Chem. 80, 639 (2008) http://dx.doi.org/10.1351/pac200880030639

  • [22] Sh.W. Kuo, Polym. Int. 58, 455 (2009) http://dx.doi.org/10.1002/pi.2513

  • [23] J.N. Low, L. M.N.B.F. Santos, C.F.R.A.C. Lima, P. Brandão, L.R. Gomes, Eur. J. Chem. 1, 61 (2010) http://dx.doi.org/10.5155/eurjchem.1.2.61-66.76

  • [24] Y. Liu, Ch. Hu, A. Comotti, M.P. Ward, Science 336, 436 (2011) http://dx.doi.org/10.1126/science.1204369

  • [25] S-W. Wu, J. Kuo, Mater. Chem. 22, 2982 (2012) http://dx.doi.org/10.1039/c1jm14699h

  • [26] M.C. Blanco, A. Palma, J. Cobo, C. Glidewell, Acta Crystallogr. C68(Pt3), o123 (2012)

  • [27] J.Ch. Kim, A.J. Lough, H. Park, Y.C. Kang, Inorg. Chem. Commun. 9, 514 (2006) http://dx.doi.org/10.1016/j.inoche.2006.02.024

  • [28] S.L. Lim, Ch.H. Ng, S.G. Teoh, W.-S. Loh, H.-K. Fun, Acta Crystallogr. E 66, m737 (2010) http://dx.doi.org/10.1107/S1600536810020064

  • [29] H. Oike, H. Imamura, H. Imaizumi, Y. Tezuka, Macromolecule 32, 4819 (1999) http://dx.doi.org/10.1021/ma990139y

  • [30] M. P. Suh, S.C. Kang, V.L. Goedken, H. Park, Inorg. Chem. 30, 365 (1991) http://dx.doi.org/10.1021/ic00003a004

  • [31] G.M. Sheldrick, Acta Crystallogr. A64, 112 (2008)

  • [32] G.M. Sheldrick, SHELXL-97 Program for the refinement of crystal structures (University of Göttingen, Germany, 1997)

  • [33] A.L. Spek, Acta Crystallogr. A46, (1990) C34

  • [34] DIAMOND-Visual Crystal Structure Information System (Crystal Impact, Postfach, Bonn, Germany, 2001)

  • [35] S.L. Ma, Y. Ma, S. Ren, S.-P. Yan, D.-Z. Liao, Struct. Chem. 19, 329 (2008) http://dx.doi.org/10.1007/s11224-008-9289-8

  • [36] J.W. Ko, K.S. Min, M.P. Suh, Inorg. Chem. 41, 2151 (2002) http://dx.doi.org/10.1021/ic011281u

  • [37] G.-C. Ou, C.-Y. Su, J.-H. Yao, T.-B. Lu, Inorg. Chem. Commun. 8, 421 (2005) http://dx.doi.org/10.1016/j.inoche.2005.01.030

  • [38] N. Nakamoto, Infrared and Raman Spectra of norganic and Coordination Compounds, 6th edition (John Wiley & Sons, New Jersey, 2009)

OPEN ACCESS

Zeitschrift + Hefte

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Suche