Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2

Pengpeng Qiu 1 , Mingcan Cui 1 , Kyounglim Kang 1 , Beomguk Park 1 , Yonggyu Son 2 , Eunkyung Khim 1 , Min Jang 3 , and Jeehyeong Khim 1
  • 1 Korea University
  • 2 Kumoh National Institute of Technology
  • 3 University of Malaya

Abstract

A combined ultrasound (US)/H2O2 process was used to oxidize arsenite to arsenate, yielding a synergistic effect value of 1.26. This showed that the combined process could be an effective method of oxidizing arsenite, instead of using either ultrasonic or H2O2 oxidation processes. This combined process was successfully modeled and optimized using a Box-Behnken design with response surface methodology (RSM). The effects of the US power density, the initial concentration of arsenite, and the H2O2 concentration on the sonochemical oxidation efficiency of arsenite were investigated. Analysis of variance indicated that the proposed quadratic model successfully interpreted the experimental data with coefficients of determination of R 2 = 0.95 and adjusted R 2 = 0.91. Through this model, we can predict and control the oxidation efficiency under different conditions. Furthermore, the optimal conditions for the oxidation of arsenite were found to be a US power density of 233.26 W L−1, an initial arsenite concentration of 0.5 mg L−1, and an H2O2 concentration of 74.29 mg L−1. The predicted oxidation efficiency obtained from the RSM under the optimal conditions was 88.95%. A confirmation test of the optimal conditions verified the validity of the model, yielding an oxidation efficiency of 90.1%.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Bissen, F.H. Frimmel, Acta Hydrochim. Hydrobiol. 31, 97 (2003) http://dx.doi.org/10.1002/aheh.200300485

  • [2] Technical Application Bulletin for Arsenic (Water Quality Association, Lisle, IL, USA, 2004)

  • [3] M. Pettine, L. Campanella, F.J. Millero, Geochim. Cosmochim. Acta 63, 2727 (1999) http://dx.doi.org/10.1016/S0016-7037(99)00212-4

  • [4] W. Driehaus, R. Seith, M. Jekel, Water Res. 29, 297 (1995) http://dx.doi.org/10.1016/0043-1354(94)E0089-O

  • [5] M.J. Kim, J. Nriagu, Sci. Total Environ. 247, 71 (2000) http://dx.doi.org/10.1016/S0048-9697(99)00470-2

  • [6] X.Y. Wei, C.A. Brockhoff-Schwegel, J.T. Creed, Analyst 125, 1215 (2000) http://dx.doi.org/10.1039/b002346i

  • [7] S.J. Hug, O. Leupin, Environ. Sci. Technol. 37, 2734 (2003) http://dx.doi.org/10.1021/es026208x

  • [8] H. Yang, W.Y. Lin, K. Rajeshwar, J. Photochem. Photobiol. 123, 137 (1999) http://dx.doi.org/10.1016/S1010-6030(99)00052-0

  • [9] T. Xu, Y. Cai, S.P. Mezyk, K.E. O’Shea, In: P.A. O’Day, D. Vlassopoulos, X. Meng, L.G. Benning (Eds.), Advances in Arsenic Research, ACS Symposium Series, Vol. 915 (ACS Publications, Washington DC, 2005) 333

  • [10] M.C. Cui, S.B. Lee, M. Jang, B. Kweon, H.Y. Jo, J.Y. Khim, Jpn. J. Appl. Phys. 50, 07HE13 (2011)

  • [11] B. Neppolian, A. Doronila, M. Ashokkumar, Water Res. 44, 3687 (2010) http://dx.doi.org/10.1016/j.watres.2010.04.003

  • [12] S.B. Lee, M.C. Cui, S.M. Na, J.Y. Khim, Jpn. J. Appl. Phys. 5, 07GD15 (2012)

  • [13] G.E.P. Box, N.R. Draper, Empirical Model-Building and Response Surface (Wiley, New York, 1987) 669

  • [14] N. Draper, J.A. John, Technometrics 30, 423 (1988) http://dx.doi.org/10.1080/00401706.1988.10488437

  • [15] H. Zhang, H. Fu, D.B. Zhang, J. Hazard. Mater. 172, 654 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.07.047

  • [16] Z.M. Zhang, H.L. Zheng, J. Hazard. Mater. 172, 1388 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.07.146

  • [17] M.S. Secula, G.D. Suditu, I. Poulios, C. Cojocaru, I. Cretescu, Chem. Eng. J. 141, 18 (2008). http://dx.doi.org/10.1016/j.cej.2007.10.003

  • [18] P.L. Smedley, Arsenic in Ground Water (Kluwer, Norwell, MA, USA, 2003) 179 http://dx.doi.org/10.1007/0-306-47956-7_7

  • [19] R.L. Johnson, J.H. Aldstadt III, Analyst. 127, 1305 (2002) http://dx.doi.org/10.1039/b203648g

  • [20] M. Khajeh, F.M. Zadeh, Bull. Environ. Contam. Toxicol. 89, 38 (2012) http://dx.doi.org/10.1007/s00128-012-0657-0

  • [21] M. Burton, K.C. Kurien, J. Phys. Chem. 63, 899 (1959) http://dx.doi.org/10.1021/j150576a031

  • [22] A.M. Joglekar, A.T. May, Cereal Foods World, 32, 857 (1987)

  • [23] J. Segurola, N.S. Allen, M. Edge, A.M. Mahon, Prog. Org. Coat. 37, 23 (1999) http://dx.doi.org/10.1016/S0300-9440(99)00052-1

  • [24] R. Arunachalam, G. Annadurai, J. Environ. Sci. Technol. 4, 65 (2011) http://dx.doi.org/10.3923/jest.2011.65.72

  • [25] B.J. Lifka, B. Ondruschka, J. Hofman, Eng. Life Sci. 3, 6 (2003) http://dx.doi.org/10.1002/elsc.200390040

  • [26] H.L. Liu, Y.R. Chiou, Chem. Eng. J. 112, 173 (2005) http://dx.doi.org/10.1016/j.cej.2005.07.012

  • [27] J.F. Fu, Y.Q. Zhao, Q.L. Wu, J. Hazard. Mater. 144, 499 (2007) http://dx.doi.org/10.1016/j.jhazmat.2006.10.071

  • [28] M. Sivakumar, A.B. Pandit, Ultrason. Sonochem. 8, 233 (2001) http://dx.doi.org/10.1016/S1350-4177(01)00082-7

  • [29] G. Andaluri, E.V. Rokhina, P.S. Suri, Ultrason. Sonochem. 19, 953 (2012) http://dx.doi.org/10.1016/j.ultsonch.2011.12.005

  • [30] K.J. Zhang, N.Y. Gao, Y. Deng, T.F. Lin, Y. Ma, L. Li, M.H. Sui, J. Environ. Sci. 23, 31 (2011) http://dx.doi.org/10.1016/S1001-0742(10)60397-X

OPEN ACCESS

Journal + Issues

Search