Promoted ternary CuO-ZrO2-Al2O3 catalysts for methanol synthesis

Paweł Mierczynski 1 , Piotr Kaczorowski 1 , Agnieszka Ura 1 , Waldemar Maniukiewicz 1 , Marcin Zaborowski 1 , Radoslaw Ciesielski 1 , Adam Kedziora 1 , and Tomasz Maniecki 1
  • 1 Institute of General and Ecological Chemistry

Abstract

Ternary CuO-ZrO2-Al2O3 catalysts promoted by palladium or gold were prepared and tested in CO hydrogenation reaction at 260°C under elevated pressure (4.8 MPa). The promotion effect of palladium or gold addition on the physicochemical and catalytical properties of CuO-ZrO2-Al2O3 catalysts in methanol synthesis (MS) was studied. The catalysts were characterized by BET, XRD, TPR-H2, TPD-NH3 methods. The BET results showed that the ternary system CuO-ZrO2-Al2O3 had the largest specific surface area, cumulative pore volume and average pore size in comparison with the promoted catalysts. The yield of methanol can be given through the following sequence: 5%Pd/CuO-ZrO2-Al2O3 > CuO-ZrO2-Al2O3 > 2%Au/CuO-ZrO2-Al2O3. We also found that the presence of gold or palladium on catalyst surface has strong influence on the reaction selectivity. The high selectivity of gold doped ternary catalyst is explained by the gold-oxide interface sites created on the catalyst surface and the acidity of those systems. The higher selectivity to methanol in the case of the palladium catalyst is explained by the spillover effect between Pd and CuO.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. Yang, X. Yu, Y.I. Zhang, W. Li, N. Tsubaki, Fuel 87, 443 (2008) http://dx.doi.org/10.1016/j.fuel.2007.06.020

  • [2] P. Mierczynski, T.P. Maniecki, K. Chalupka, W. Maniukiewicz, W.K. Jozwiak, Catal. Today 176, 21 (2011) http://dx.doi.org/10.1016/j.cattod.2011.06.009

  • [3] P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, T. Maniecki, Top. Catal. 56, 1015 (2013) http://dx.doi.org/10.1007/s11244-013-0065-7

  • [4] A. Coteron, A.N. Hayhurst, Chem. Eng. Sci. 49, 209 (1994) http://dx.doi.org/10.1016/0009-2509(94)80039-1

  • [5] A. Bell, Stud. Surf. Sci. Catal. 136, 13 (2001) http://dx.doi.org/10.1016/S0167-2991(01)80273-1

  • [6] M.D. Rhodes, A.T. Bell, J. Catal. 233(1), 198 (2005) http://dx.doi.org/10.1016/j.jcat.2005.04.026

  • [7] M. Lachowska, J. Skrzypek, React. Kinet. Catal. Lett. 83(2), 269 (2004) http://dx.doi.org/10.1023/B:REAC.0000046086.93121.36

  • [8] R.A. Koeppel, A. Baiker, C. Schild, A. Wokaun, Surf. Sci. Catal. 63, 59 (1991) http://dx.doi.org/10.1016/S0167-2991(08)64572-3

  • [9] Y. Nitta, O. Suwata, Y. Ikeda, Y. Okamoto, T. Imanaka, Catal. Lett. 26, 345 (1994) http://dx.doi.org/10.1007/BF00810608

  • [10] H. Chen, A. Yin, X. Guo, W.-l. Dai, K.-N. Fan, Catal. Lett. 131, 632 (2009) http://dx.doi.org/10.1007/s10562-009-0008-x

  • [11] C.H. Bartholomew, J.F. Farrauto, Fundamentals of Industrial Catalytic Processes (Wiley Interscience, New York 2006)

  • [12] Q. Yu, X. Yao, H. Zhang, F. Gao, L. Dong, Appl. Catal. A: Gen. 423–424, 42 (2012) http://dx.doi.org/10.1016/j.apcata.2012.02.017

  • [13] K. Narui, K. Furuta, H. Yata, A. Nishida, Y. Kohtoku, T. Matsuzaki, Catal. Today 45, 173 (1998) http://dx.doi.org/10.1016/S0920-5861(98)00274-0

  • [14] P. Mierczynski, T.P. Maniecki, W. Maniukiewicz, W.K. Jozwiak, Reac. Kinet. Mech. Cat. 104, 139 (2011) http://dx.doi.org/10.1007/s11144-011-0336-x

  • [15] T.P. Maniecki, P. Mierczynski, W. Maniukiewicz, D. Gebauer, W. K. Jozwiak, Kinet. Catal. 50(2), 228 (2009) http://dx.doi.org/10.1134/S0023158409020128

  • [16] Y.H. Hu, L. Dong, M.M. Shen, D. Liu, J. Wang, W.P. Ding, Y. Chen, Appl. Catal. B: Environ. 31, 61 (2001) http://dx.doi.org/10.1016/S0926-3373(00)00269-1

  • [17] Q. Yu, L.J. Liu, L.H. Dong, D. Li, B. Liu, F. Gao, K.Q. Sun, L. Dong, Y. Chen, Appl. Catal. B: Environ. 96, 350 (2010) http://dx.doi.org/10.1016/j.apcatb.2010.02.032

  • [18] P. Ling, D. Li, X. Wang. J. Mol. Catal. A: Chemical 357, 112 (2012) http://dx.doi.org/10.1016/j.molcata.2012.01.028

  • [19] G.R. Li, W. Li, M.H. Zhang, K.Y. Tao, Catal. Today 93, 595 (2004) http://dx.doi.org/10.1016/j.cattod.2004.06.010

  • [20] P. Mierczynski, W. Maniukiewicz, T.P. Maniecki, Cent. Eur. J. Chem. 11(6), 912 (2013) http://dx.doi.org/10.2478/s11532-013-0223-6

  • [21] P. Mierczynski, P. Kaczorowski, T.P. Maniecki, K. Bawolak-Olczak, W. Maniukiewicz, Reac. Kinet. Mech. Cat. 109, 13 (2013) http://dx.doi.org/10.1007/s11144-013-0550-9

  • [22] J. Luo, H. Xu, Y. Liu, W. Chu, Ch. Jiang, X. Zhao, Appl. Catal. A: General 423–424, 121 (2012) http://dx.doi.org/10.1016/j.apcata.2012.02.025

  • [23] Z. Liu, M.D. Amiridis, Y. Chen, J. Phys. Chem. B 109, 1251 (2005) http://dx.doi.org/10.1021/jp046368q

  • [24] Z.Q. Zou, M. Meng, Y.Q. Zha, J. Phys. Chem. C 114, 468 (2010) http://dx.doi.org/10.1021/jp908721a

  • [25] M.L. Cubeiro, J.L.G. Fierro, J. Catal. 179, 150 (1998) http://dx.doi.org/10.1006/jcat.1998.2184

  • [26] J.D.A. Bellido, E.M. Assaf, Fuel 88, 1673 (2009) http://dx.doi.org/10.1016/j.fuel.2009.04.015

  • [27] W. Dow, P. Wang, T. Huang, J. Catal. 160, 155 (1996) http://dx.doi.org/10.1006/jcat.1996.0135

  • [28] M. Shimokawabe, H. Asakawa, N. Takesawa, Appl. Catal. 59, 45 (1990) http://dx.doi.org/10.1016/S0166-9834(00)82186-7

  • [29] R. Zhou, T. Yu, X. Jiang, F. Chen, X. Zheng, Appl. Surf. Sci. 148, 263 (1999) http://dx.doi.org/10.1016/S0169-4332(98)00369-9

  • [30] N.-Y. Topsøe, K. Pedersen, E.G. Derouane, J. Catal. 70, 41 (1981) http://dx.doi.org/10.1016/0021-9517(81)90315-8

  • [31] R. Barthos, F. Lonyi, Gy. Onyestyák, J. Valyon, J. Phys. Chem. B 104, 7311 (2000) http://dx.doi.org/10.1021/jp000937m

  • [32] H. Sakurai, M. Haruta, Catal. Today 29, 361 (1996) http://dx.doi.org/10.1016/0920-5861(95)00305-3

OPEN ACCESS

Journal + Issues

Search