Ultrafiltration of oil-in-water emulsion by using ceramic membrane: Taguchi experimental design approach

Jania Milić 1 , Irena Petrinić 1 , Andreja Goršek 1 , and Marjana Simonič 1
  • 1 University of Maribor

Abstract

In this study, a Taguchi experimental design methodology was used to determine the importance of process parameters influencing the ultrafiltration (UF) of oil-in-water emulsions. Four parameters including pH (5–11), oil concentration (φ) (0.5–3% (v/v)), temperature (T) (25–45°C) and trans-membrane pressure (TMP) (1–5 bar) were studied at three levels. The highest flux was used as optimization criterion. In order to reduce the number of experiments, a Taguchi method was applied. Analysis of variance (ANOVA) was used to determine the most significant parameters affecting the optimization criterion.

Filtration experiments were performed in a cross-flow operation at a total recycle condition in a laboratory-scale plant. The ceramic UF membrane with a pore size of 50 nm was employed in a tubular module with an active area of 0,418 m2. We used water-soluble cutting oil mixed with water as a model oil-in-water emulsion. During the experiment, the drop size and zeta potential distributions were evaluated.

The optimum conditions for UF providing the highest flux were found at TMP = 5 bar, pH = 7, and φ = 0.5 v/v%. The pH of emulsion had the highest impact on COD retention. The results of this study could be used as a guideline for operating UF systems with ceramic membranes at optimal conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. H. Lee, K.C. Chung, M.C. Shin, J.I. Dong, H.S. Lee, K.H. Auh, Materials Letters 52, 266 (2002) http://dx.doi.org/10.1016/S0167-577X(01)00405-0

  • [2] J. Benito, A. Cambiella, A. Lobo, G. Gutierrez, J. Coca, C. Pazos, Clean Technologies and Environmental Policy 12, 31 (2010) http://dx.doi.org/10.1007/s10098-009-0219-2

  • [3] D. M. Krstić, W. Höfflinger, A.K. Koris, G.N. Vatai, Separation and purification technology 57, 134 (2007) http://dx.doi.org/10.1016/j.seppur.2007.03.023

  • [4] M. Cheryan, N. Rajagopalan, Journal of Membrane Science 151, 13 (1998) http://dx.doi.org/10.1016/S0376-7388(98)00190-2

  • [5] M. Hesampour, A. Krzyzaniak, M. Nyström, Desalination 222, 212 (2008) http://dx.doi.org/10.1016/j.desal.2007.01.155

  • [6] G. N. Vatai, D.M. Krstic, A.K. Koris, I.L. Gáspár, M.N. Tekic, Desalination and Water Treatment 3, 162 (2009 http://dx.doi.org/10.5004/dwt.2009.455

  • [7] M. Abbasi, A. Salahi, M. Mirfendereski, T. Mohammadi, F. Rekabdar, M. Hemmati, Desalination and Water Treatment 37, 21 (2012) http://dx.doi.org/10.1080/19443994.2012.661249

  • [8] M. Mulder, Basic principles of membrane technology, 2nd edition (Springer, The Netherlands, 1996) http://dx.doi.org/10.1007/978-94-009-1766-8

  • [9] G. N. Vatai, D.M. Krstic, W. Höflinger, A.K. Koris, M.N. Tekic, Desalination 204, 255 (2007) http://dx.doi.org/10.1016/j.desal.2006.02.034

  • [10] D. M. Krstić, A.K. Koris, M.N. Tekić, Desalination 191, 371 (2006) http://dx.doi.org/10.1016/j.desal.2005.06.043

  • [11] M. Hesampour, A. Krzyzaniak, M. Nyström, Journal of Membrane Science 325, 199 (2008) http://dx.doi.org/10.1016/j.memsci.2008.07.048

  • [12] E. Drioli, L. Giorno, Comprehensive membrane science and engineering (Elsevier Science, United Kingdom, 2010)

  • [13] R. C. Viadero Jr, R.L. Vaughan Jr, B.E. Reed, Journal of Membrane Science 162, 199 (1999) http://dx.doi.org/10.1016/S0376-7388(99)00143-X

  • [14] M. J. Um, S.H. Yoon, C.H. Lee, K.Y. Chung, J.J. Kim, Water research 35, 4095 (2001) http://dx.doi.org/10.1016/S0043-1354(01)00155-5

  • [15] R. V. Lopez, S. Elmaleh, N. Ghaffor, Journal of Membrane Science 102, 55 (1995) http://dx.doi.org/10.1016/0376-7388(94)00249-X

  • [16] A. Ezzati, E. Gorouhi, T. Mohammadi, Desalination 185, 371 (2005) http://dx.doi.org/10.1016/j.desal.2005.03.086

  • [17] A. Salahi, M. Abbasi, T. Mohammadi, Desalination, 251, 153 (2010) http://dx.doi.org/10.1016/j.desal.2009.08.006

  • [18] A. Rezvanpour, R. Roostaazad, M. Hesampour, M. Nyström, C. Ghotbi, Journal of hazardous materials 161, 1216 (2009) http://dx.doi.org/10.1016/j.jhazmat.2008.04.074

  • [19] A. Lobo, Á. Cambiella, J.M. Benito, C. Pazos, J. Coca, Journal of Membrane Science 278, 328 (2006) http://dx.doi.org/10.1016/j.memsci.2005.11.016

  • [20] F. L. Hua, Ceramic membrane technology applied to oily wastewater separation, Doctoral thesis (The Hong Kong Polytechnic University, Hong Kong, China, 2006)

  • [21] K. R. Ranjit, A primer on the Taguchi method (Van Nostrand Reinhold, New York, 1990)

  • [22] Ö. Gökkuş, Y.Ş. Yıldız, B. Yavuz, Desalination and Water Treatment 49, 263 (2012) http://dx.doi.org/10.1080/19443994.2012.719334

  • [23] A. Gorsek, M. Tramsek, Biomass — detection, production and usage (InTech, Croatia, 2011) 185

  • [24] L. Dobrzanski, J. Domagala, J. Silva, Archives of Materials Science and Engineering 28, 133 (2007)

  • [25] Z. B. Gönnder, Y. Kaya, I. Vergili, H. Barlas, Separation and purification technology 70, 265 (2010) http://dx.doi.org/10.1016/j.seppur.2009.10.001

  • [26] M. Nowacka, T. Jesionowski, Physicochemical Problems of Mineral Processing 48, 209 (2012)

  • [27] P. Cañizares, F. Martínez, J. Lobato, M.A. Rodrigo, Journal of hazardous materials 145, 233 (2007) http://dx.doi.org/10.1016/j.jhazmat.2006.11.018

  • [28] A. Hong, A. Fane, R. Burford, Journal of Membrane Science 222, 19 (2003) http://dx.doi.org/10.1016/S0376-7388(03)00137-6

  • [29] F. L. Hua, Y.F. Tsang, Y.J. Wang, S.Y. Chan, H. Chua, S.N. Sin, Chemical Engineering Journal 128, 169 (2007) http://dx.doi.org/10.1016/j.cej.2006.10.017

  • [30] F. F. Nazzal, M.R. Wiesner, Water environment research 68, 1187 (1996) http://dx.doi.org/10.2175/106143096X128621

OPEN ACCESS

Journal + Issues

Search