Agglomeration of ZnS nanoparticles without capping additives at different temperatures

Petr Praus 1 , Richard Dvorský 2 , Petr Kovář 3 , and Ladislav Svoboda 1
  • 1 VŠB-Technical University of Ostrava
  • 2 VŠB-Technical University of Ostrava
  • 3 Charles University in Prague, Faculty of Mathematics and Physics

Abstract

ZnS nanoparticles were precipitated in diluted aqueous solutions of zinc and sulphide ions without capping additives at a temperature interval of 0.5–20°C. ZnS nanoparticles were arranged in large flocs that were disaggregated into smaller agglomerates with hydrodynamic sizes of 70–150 nm depending on temperature. A linear relationship between hydrodynamic radius (R a) and temperature (T) was theoretically derived as R a =652 - 2.11 T.

The radii of 1.9–2.2 nm of individual ZnS nanoparticles were calculated on the basis of gap energies estimated from their UV absorption spectra. Low zeta potentials of these dispersions of −5.0 mV to −6.3 mV did not depend on temperature. Interactions between individual ZnS nanoparticles were modelled in the Material Studio environment. Water molecules were found to stabilize ZnS nanoparticles via electrostatic interactions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R.J. Hunter, Foundations of Colloid Science, 2nd edition (Oxford University Press, Oxford, 2009) 1–43

  • [2] G. Smith (Ed.), Nanoparticles: From Theory to Applications, 2nd edition (Wiley-VCH, Weinheim, 2010)

  • [3] K.C. Kwiatkowski, Ch.M. Lukehart, In: H.S. Nalwa (Ed), Nanostructured Materials and Technology (Academic Press, London, 2002)

  • [4] B.R. Cuenya, Thin Solid Films 518(12), 3127 (2010) http://dx.doi.org/10.1016/j.tsf.2010.01.018

  • [5] B. Tyagi, K.B. Sidhpuria, R.V. Jasra, In: H.S. Nalwa (Ed), Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Valencia, USA, 2011) Vol. 17, 479–546

  • [6] L.E. Brus, J. Phys. Chem. 90(12) 2255 (1986)

  • [7] K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan, Chem. Mater. 13(9), 2765 (2001) http://dx.doi.org/10.1021/cm010254z

  • [8] O. Kozák, P. Praus, K. Kočí, M. Klementová, J. Colloid Interf. Sci. 352(2), 244 (2010) http://dx.doi.org/10.1016/j.jcis.2010.09.016

  • [9] P. Praus, R. Dvorský, P. Horínková, M. Pospíšil, P. Kovář, J. Colloid Interf. Sci. 377(1), 58 (2012) http://dx.doi.org/10.1016/j.jcis.2012.03.073

  • [10] Materials Studio Modeling Environment, Release 4.3 Documentation (Accelrys Software Inc., San Diego, 2003)

  • [11] J. W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, (Eds.), Handbook of Mineralogy (Mineralogical Society of America, Chantilly, 2013) http://www.handbookofmineralogy.org/ (accessed on 12th May 2013).

  • [12] A.K. Rappe, W.A. Goddard, J. Phys. Chem 95(8), 3358 (1991) http://dx.doi.org/10.1021/j100161a070

  • [13] H. Sun, D. Rigby, Spectrochim. Acta A 53(8), 1301 (1997) http://dx.doi.org/10.1016/S1386-1425(97)00013-9

  • [14] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114(25), 10024 (1992) http://dx.doi.org/10.1021/ja00051a040

  • [15] M. Tieman, Ö. Weiß, J. Hartikainen, F. Marlow, M. Lindén, Chem. Phys. Chem. 6(10), 2113 (2005) http://dx.doi.org/10.1002/cphc.200500163

  • [16] K. Dutta, S. Manna, S.K. De, Synth. Met. 159(3–4), 315 (2009) http://dx.doi.org/10.1016/j.synthmet.2008.09.003

OPEN ACCESS

Journal + Issues

Search