Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species

Alicja Gackowska 1 , Maciej Przybyłek 2 , Waldemar Studziński 1 , and Jerzy Gaca 1
  • 1 University of Technology and Life Science
  • 2 Nicolaus Copernicus University

Abstract

2-Ethylhexyl 4-methoxycinnamate (EHMC) is one of the most commonly used sunscreen ingredient. In this study we investigated photodegradation of EHMC in the presence of such common oxidizing and chlorinating systems as H2O2, H2O2/HCl, H2O2/UV, and H2O2/HCl/UV. Reaction products were detected by gas chromatography with a mass spectrometric detector (GC-MS). As a result of experimental studies chloro-substituted 4-methoxycinnamic acid (4-MCA), 4-methoxybenzaldehyde (4-MBA) and 4-methoxyphenol (4-MP) were identified. Experimental studies were enriched with DFT and MP2 calculations. We found that reactions of 4-MCA, 4-MBA and 4-MP with Cl2 and HOCl were in all cases thermodynamically favorable. However, reactivity indices provide a better explanation of the formation of particular chloroorganic compounds. Generally, those isomeric forms of mono- and dichlorinated compounds which exhibits the highest hardness were identified. Nucleophilicity of the chloroorganic compounds precursors were examined by means of the Fukui function.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Y. Dobashi, T. Yuyama, Y. Ohkatsu, Polym. Degrad. Stab. 92, 1227 (2007) http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.024

  • [2] V. S. Sivokhin, Polym. Sci. USSR 21, 1207 (1980) http://dx.doi.org/10.1016/0032-3950(79)90020-0

  • [3] A. Kikuchi, H. Saito, M. Mori, M. Yagi, Photochem. Photobiol. Sci. 10, 1902 (2011) http://dx.doi.org/10.1039/c1pp05168g

  • [4] A. J.M. Santos, M.S. Miranda, J.C.G. Esteves da Silva, Water Res. 46, 3167 (2012) http://dx.doi.org/10.1016/j.watres.2012.03.057

  • [5] A. J.M. Santos, D.M.A. Crista, M.S. Miranda, I.F. Almeida, J.P. Sousa e Silva, P.C. Costa, M.H. Amaral, P.A.L. Lobão, J.M. Sousa Lobo, J.C.G. Esteves da Silva, Environ. Chem. 10, 127 (2013) http://dx.doi.org/10.1071/EN13012

  • [6] M. S. Miranda, L. Pinto da Silva, J.C.G. Esteves da Silva, J. Phys. Org. Chem. 27, 47 (2014) http://dx.doi.org/10.1002/poc.3235

  • [7] Y. T. Chen, Y.T. Lin, C.C. Li, S.F. Sie, Y.W. Chen-Yang, Colloids Surf. B 115, 191 (2014) http://dx.doi.org/10.1016/j.colsurfb.2013.11.011

  • [8] Z. A. Lewicka, W.W. Yu, B.L. Oliva, E.Q. Contreras, V.L. Colvin, J. Photochem. Photobiol. A, 263, 24 (2013) http://dx.doi.org/10.1016/j.jphotochem.2013.04.019

  • [9] L. Zhou, Y. Ji, C. Zeng, Y. Zhang, Z. Wang, X. Yang, Water Res., 47, 153 (2013) http://dx.doi.org/10.1016/j.watres.2012.09.045

  • [10] Y. Ji, L. Zhou, Y. Zhang, C. Ferronato, M. Brigante, G. Mailhot, X. Yang, J.-M. Chovelon, Water Res. 47, 5865 (2013) http://dx.doi.org/10.1016/j.watres.2013.07.009

  • [11] A. Christiansson, J. Eriksson, D. Teclechiel, Å. Bergman, Environ. Sci. Pollut. Res. 16, 312 (2009) http://dx.doi.org/10.1007/s11356-009-0150-4

  • [12] L. A. MacManus-Spencer, M.L. Tse, J.L. Klein, A.E. Kracunas, Environ. Sci. Technol. 45, 3931 (2011) http://dx.doi.org/10.1021/es103682a

  • [13] C. Ferrari, H. Chen, R. Lavezza, C. Santinelli, I. Longo, E. Bramanti, Int. J. Photoenergy 2013, 1 (2013) http://dx.doi.org/10.1155/2013/854857

  • [14] V. Nikolić, D. Ilić, L. Nikolić, M. Stanković, M. Cakić, L. Stanojević, A. Kapor, M. Popsavin, Cent. Eur. J. Chem. 8, 744 (2010) http://dx.doi.org/10.2478/s11532-010-0043-x

  • [15] A. Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, Cent. Eur. J. Chem. 10, 989 (2012) http://dx.doi.org/10.2478/s11532-012-0049-7

  • [16] S. Pattanaargson, P. Limphong, Int. J. Cosmetic. Sci. 23, 153 (2001) http://dx.doi.org/10.1046/j.1467-2494.2001.00071.x

  • [17] N. Tarras-Wahlberg, G. Stenhagen, O. Larkö, A. Rosén, A.-M. Wennberg, O. Wennerström, J. Invest. Dermatol. 113, 547 (1999) http://dx.doi.org/10.1046/j.1523-1747.1999.00721.x

  • [18] J. Gaca, S. Żak Hydrogen peroxide and chlorides, examples of application and theoretical aspects (University of Technology and Agriculture in Bydgoszcz Publishers, Poland, 2004) (in Polish)

  • [19] M. Nakajima, T. Kawakami, T. Niino, Y. Takahashi, S. Onodera, J. Health. Sci. 55, 363 (2009) http://dx.doi.org/10.1248/jhs.55.363

  • [20] A. Gackowska, J. Gaca, Chemik 4, 301 (2011)

  • [21] N. Higashi, A. Ikehata, N. Kariyama, Y. Ozaki, Appl. Spectrosc. 62, 1022 (2008) http://dx.doi.org/10.1366/000370208785793236

  • [22] P. Cysewski, A. Gackowska, J. Gaca, Chemosphere 63, 165 (2006) http://dx.doi.org/10.1016/j.chemosphere.2005.06.061

  • [23] C. W. Jones, Applications of hydrogen peroxide and derivatives (Royal Society of Chemistry, Cambridge 1999)

  • [24] A. D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.3098

  • [25] A. D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913

  • [26] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989) http://dx.doi.org/10.1016/0009-2614(89)87234-3

  • [27] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785

  • [28] S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981) http://dx.doi.org/10.1016/0301-0104(81)85090-2

  • [29] S. Miertuš, J. Tomasi, Chem. Phys. 65, 239 (1982) http://dx.doi.org/10.1016/0301-0104(82)85072-6

  • [30] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E. 01 (Gaussian, Inc., Pittsburgh PA, 2004)

  • [31] R. G. Pearson, Proc. Natl. Acad. Sci. USA 83, 8440 (1986) http://dx.doi.org/10.1073/pnas.83.22.8440

  • [32] R. G. Parr, L. von Szentpály, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999) http://dx.doi.org/10.1021/ja983494x

  • [33] C. Møller, M.S. Plesset, Phys. Rev. 46, 0618 (1934) http://dx.doi.org/10.1103/PhysRev.46.618

  • [34] M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503 (1988) http://dx.doi.org/10.1016/0009-2614(88)85250-3

  • [35] S. Saebø, J. Almlöf, Chem. Phys. Lett. 154, 83 (1989) http://dx.doi.org/10.1016/0009-2614(89)87442-1

  • [36] M. J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990) http://dx.doi.org/10.1016/0009-2614(90)80029-D

  • [37] M. J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 281 (1990) http://dx.doi.org/10.1016/0009-2614(90)80030-H

  • [38] M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994) http://dx.doi.org/10.1016/0009-2614(94)00116-2

  • [39] J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 13, 3839 (1972) http://dx.doi.org/10.1016/S0040-4039(01)94175-9

  • [40] T. M. Krygowski, M.K. Cyrański, Z. Czarnocki, G. Haäfelinger, A.R. Katritzky, Tetrahedron 56, 1783 (2000) http://dx.doi.org/10.1016/S0040-4020(99)00979-5

  • [41] W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108, 5708 (1986) http://dx.doi.org/10.1021/ja00279a008

  • [42] S. Pattanaargson, T. Munhapol, P. Hirumsupachot, P. Luangthongaram, J. Photochem. Photobiol. A 161, 269 (2004)

  • [43] S. P. Huong, V. Andrieu, J.-P. Reynier, E. Rocher, J.-D. Fourneron, J. Photochem. Photobiol. A 186, 65 (2007) http://dx.doi.org/10.1016/j.jphotochem.2006.07.012

  • [44] P. Renard, F. Siekmann, A. Gandolfo, J. Socorro, G. Salque, S. Ravier, E. Quivet, J.-L. Clément, M. Traikia, A.-M. Delort, D. Voisin, V. Vuitton, R. Thissen, A. Monod, Atmos. Chem. Phys. 13, 6473 (2013) http://dx.doi.org/10.5194/acp-13-6473-2013

  • [45] N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. de Alencastro, C. Pulgarín Water Res. 46, 1947 (2012) http://dx.doi.org/10.1016/j.watres.2012.01.014

  • [46] M. Czaplicka, J. Hazard. Mater. 134, 45 (2006) http://dx.doi.org/10.1016/j.jhazmat.2005.10.039

  • [47] X. -W. Li, E. Shibata, T. Nakamura, Mater. Trans. 44, 2441 (2003) http://dx.doi.org/10.2320/matertrans.44.2441

  • [48] M. V. Roux, M. Temprado, J.S. Chickos, Y. Nagano, J. Phys. Chem. Ref. Data 37, 1855 (2008) http://dx.doi.org/10.1063/1.2955570

  • [49] V. A. Platonov, Yu.N. Simulin Russ. J. Phys. Chem. 59, 179 (1985)

  • [50] J. D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere Publishing Corp, New York, 1984)

  • [51] M. W. Chase, NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9, 4th edition (American Chemical Society, American Institute of Physics, Washington, DC, 1998)

  • [52] M. Bekbolet, Z. Çınar, M. Kılıç, C.S. Uyguner, C. Minero, E. Pelizzetti, Chemosphere 75, 1008 (2009) http://dx.doi.org/10.1016/j.chemosphere.2009.01.051

  • [53] E. Zahedi, S. Ali-Asgari, V. Keley, Cent. Eur. J. Chem. 8, 1097 (2010) http://dx.doi.org/10.2478/s11532-010-0084-1

  • [54] R. Taylor, in: C.H. Bamford, C.F.H. Tipper (Eds.), Comprehensive chemical kinetics, (Elsevier Publishing Co, Amsterdam/New York, 1972) Volume 13: Reactions of aromatic compounds, 1

  • [55] G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955) http://dx.doi.org/10.1021/ja01607a027

  • [56] T. E. Jones, J. Phys. Chem. A 116, 4233 (2012) http://dx.doi.org/10.1021/jp302087n

  • [57] Md. E.U. Hoque, H.W. Lee, Bull. Korean. Chem. Soc. 32, 2109 (2011) http://dx.doi.org/10.5012/bkcs.2011.32.6.2109

  • [58] M. Przybyłek, J. Gaca, Chem. Pap. 66, 699 (2012) http://dx.doi.org/10.2478/s11696-012-0163-1

  • [59] V. Benin, J. Mol. Struc. (Theochem) 764, 21 (2006) http://dx.doi.org/10.1016/j.theochem.2006.01.030

  • [60] H. D. Banks, J. Org. Chem. 68, 2639 (2003) http://dx.doi.org/10.1021/jo0268411

  • [61] C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91, 165 (1991) http://dx.doi.org/10.1021/cr00002a004

OPEN ACCESS

Journal + Issues

Search