Properties of atmospheric pressure plasma oxidized layers on silicon wafers

Dana Skácelová 1 , Petr Sládek 2 , Pavel Sťahel 1 , Lukáš Pawera 2 , Martin Haničinec 1 , Jürgen Meichsner 3 , and Mirko Černák 1
  • 1 Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
  • 2 Department of Physics, Faculty of Education, Masaryk University, Poříčí 7, 603 00, Brno, Czech Republic
  • 3 Institute of Physics, University of Greifswald, Felix-Hausdorff-Strasse 6, 17487, Greifswald, Germany


In this research a new process of plasma oxidation of crystalline silicon at room temperature is studied. The plasma oxidation was carried out using Diffuse Coplanar Surface Barrier Discharge (DCSBD) operating in ambient air and oxygen at atmospheric pressure. The influence of exposition time, plasma parameters and crystallographic orientation of silicon on oxidized layers and their dielectric properties were investigated. Thickness, structure and morphology of these layers were studied by ellipsometry, infrared absorption spectroscopy and scanning electron microscopy. During the treatment time, from 1 to 30 minutes, oxidized layers were obtained with thickness from 1 to 10 nm. Their roughness depends on the crystallographic orientation of silicon surface and exposure time. Electrical parameters of the prepared layers indicate the presence of an intermediate layer between silicon substrate and the oxidized layer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Siffert P., Krimmel E., Silicon:evolution and future of a technology, Springer - Verlag, New York, 2004, pp. 22.

  • [2] Kasap S., Capper P., Springer handbook of electronics and photonic materials, Springer, New York, 2007, pp. 373, 659.

  • [3] Sze S.M., Kwok K.NG, Physics of Semiconductor Devices, John Wiley and Sons, New Jersey, 2007, pp. 197.

  • [4] Taylor S., Zhang J.F., Eccleston W., A review of the plasma oxidation of silicon and its applications, Semicond. Sci. Tech., 1993, 8, 1426.

  • [5] Tinoco J.C., Estrada M., Baez H., Cerdeira A., Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials, Thin Solid Films, 2006, 496, 546-554.

  • [6] Giustino F., Pasquarello A., Electronic and dielectric properties of a suboxide interlayer at the silicon-oxide interface in MOS device, Surf. Sci., 2005, 586, 183-191.

  • [7] Hess D.W., Plasma-assisted oxidation, anodization, and nitridation of silicon, IBM J. Res. & Dev., 1999, 43, 127-145.

  • [8] Skácelová D., Danilov V., Schäfer J., Quade A., Sťahel P., Černák M., Meichsner J., Room temperature plasma oxidation in DCSBD: A new method for preparation of silicon dioxide films at atmospheric pressure, Mat. Sci. Engineer: B, 2013, 178, 651.

  • [9] Černák M., Černáková L., Hudec I., Kováčik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 1-6.

  • [10] Černák M., Method and apparatus for treatment of textile materials, European Patent EP 1387901 B1, 2002.

  • [11] Černák M., Ráhel´ J., Apparatus and treatment method of wood surface, wood fibres and wooden. Patent WO 2008085139. 2008.

  • [12] Šimor M., Ráhel´J., Vojtek P., Černák. M., tmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716-2718.

  • [13] Pamreddy A., Skácelová D., Haničinec M., Sťahel P., Stupavská M., Černák M., Havel J., Plasma cleaning and activation of silicon surface in Dielectric Coplanar Surface Barrier Discharge, Surf. Coat. Technol., 2013, 236, 326-331.

  • [14] Štěpánová V., Skácelová D., Slavíček P., Černák M., Chem. listy, Diffuse coplanar surface barrier discharge for cleaning and activation of glass substrate, 2012, 106, 1495-1498.

  • [15] Fialová M., Skácelová D., Sťahel P., Černák M., Chem. listy, Improvement of surface properties of reinforcing polypropylene fibres by atmospheric pressure plasma treatment, 2012, 106, 1439-1442.

  • [16] Deal R.E., Grove A.S., General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys., 1965, 36, 3770-3778.

  • [17] Zhang X.G., Electrochemistry of Silicon and Its Oxide, Kluwer Academic/Plenum Publishers, New York, 2001.

  • [18] Green M.L., Gusev E.P., Degraeve R., Garfunkel E.L., Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits, J. Appl. Phys., 2001, 90, 2057.

  • [19] Lisovskii I.P., Litovchenko V.G., Lozinskii V.G., Steblovskii G.I., Development of the structure of thin SiO2 films during thermal growth on Si substrate, Thin Solid Films, 1992, 213,164-169.

  • [20] Diebold A.C., Venables D., Chabal Y., Muller D., Weldon M., Garfunkel E., Characterization and production metrology of thin transistor gate oxide films, Mat. Sci. Semicon. Proc. 2, 1999, 45, 103-147.

  • [21] Mauri F., Pasquarello A., Pfrommer B.G., Yoon Y., Louie S. G., Si-O-Si bond-angle distribution in vitreous silica from first-principles Si-29 NMR analysis, Phys. Rev. B, 2000, 62, R4786-R4789.

  • [22] Chang H. S., Yang H.D., Hwang H., Cho H.M., Lee H.J., Moon D.W., Measurement of the physical and electrical thickness of ultrathin gate oxides, J. Vac. Sci. Technol. B, 2002, 20, 1836.

  • [23] Giustino F., Pasquarello A., Theory of atomic-scale dielectric permittivity at insulator interfaces, Phys. Rev. B, 2005, 71, 144104.


Journal + Issues