Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors

Dominika Pihíková 1 , Peter Kasák 2 , and Jan Tkac 1
  • 1 Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
  • 2 Center for Advanced Materials, Qatar University, P.O.Box 2713 Doha, Qatar

Abstract

Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ghazarian H., Idoni B., Oppenheimer S.B., A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics, Acta Histochem., 2011, 113, 236-247.

  • [2] Burton D.R., Poignard P., Stanfield R.L., Wilson I.A., Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses, Science, 2012, 337, 183-186.

  • [3] Hirabayashi J., Yamada M., Kuno A., Tateno H., Lectin microarrays: concept, principle and applications, Chem. Soc. Rev., 2013, 42, 4443-4458.

  • [4] Tong L., Baskaran G., Jones M.B., Rhee J.K., Yarema K.J., Glycosylation changes as markers for the diagnosis and treatment of human disease, Biotechnol. Gen. Eng. Rev., 2003, 20, 199-244.

  • [5] Wang B., Boons G.-J. Carbohydrate recognition: Biological problems, methods and applications.: John Wiley & Sons, Inc.; 2011.

  • [6] Tkac J., Bertok T., Nahalka J., Gemeiner P., Perspectives in glycomics and lectin engineering, Methods in Molecular Biology, 2014, 1200, 421-445.

  • [7] Dalziel M., Crispin M., Scanlan C.N., Zitzmann N., Dwek R.A., Emerging principles for the therapeutic exploitation of glycosylation, Science, 2014, 343, 37. DOI: 10.1126/ science.1235681.

  • [8] Choi E., Hill M.M., Targeted high-throughput glycoproteomics for glyco-biomarker discovery, Integrative Proteomics. InTech, 2012.

  • [9] Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., et al. Essential of glycobiology. 2nd ed: Cold Spring Harbor Laboratory Press (NY); 2009.

  • [10] Nelson D.L., Cox M.M. Carbohydrates and glycobiology, Chapter 7 in Lehninger principles of biochemistry. 4 ed: W.H. Freeman & Company; 2004.

  • [11] Sharon N., Lis H., Carbohydrates in cell recognition, Sci. Am., 1993, 268, 82-89.

  • [12] Cummings R.D., Pierce J.M., The challenge and promise of glycomics, Chem. Biol., 2014, 21, 1-15.

  • [13] Reuel N.F., Mu B., Zhang J., Hinckley A., Strano M.S., Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps, Chem. Soc. Rev., 2012, 41, 5744-5779.

  • [14] Alley W.R., Mann B.F., Novotny M.V., High-sensitivity analytical approaches for the structural characterization of glycoproteins, Chem. Rev., 2013, 113, 2668-2732.

  • [15] Arthur C.M., Cummings R.D., Stowell S.R., Using glycan microarrays to understand immunity, Curr. Opin. Chem. Biol., 2014, 18, 55-61.

  • [16] Geissner A., Anish C., Seeberger P.H., Glycan arrays as tools for infectious disease research, Curr. Opin. Chem. Biol., 2014, 18, 38-45.

  • [17] Gemeiner P., Mislovicova D., Tkac J., Svitel J., Patoprsty V., Hrabarova E., et al., Lectinomics II. A highway to biomedical/ clinical diagnostics, Biotechnol. Adv., 2009, 27, 1-15.

  • [18] Katrlik J., Svitel J., Gemeiner P., Kozar T., Tkac J., Glycan and lectin microarrays for glycomics and medicinal applications, Med. Res. Rev., 2010, 30, 394-418.

  • [19] Palma A.S., Feizi T., Childs R.A., Chai W., Liu Y., The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome, Curr. Opin. Chem. Biol., 2014, 18, 87-94.

  • [20] Park S., Gildersleeve J.C., Blixt O., Shin I., Carbohydrate microarrays, Chem. Soc. Rev., 2013, 42, 4310-4326.

  • [21] Sharon N., Lis H., History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 2004, 14, 53R- 62R.

  • [22] Nilsson C.L. Lectins: Analytical technologies. Oxford: Elsevier; 2007.

  • [23] Boyd W.C., The protein of the immune reactions, The Proteins, 1954, 2, 756-844.

  • [24] Lis H., Sharon N., Lectin-carbohydrate interactions, Curr. Opin. Struct. Biol., 1991, 1, 741-749.

  • [25] Mody R., Joshi S., Chaney W., Use of lectins as diagnostic and therapeutic tools for cancer, J. Pharmacol. Toxicol. Methods, 1995, 33, 1-10.

  • [26] Arnaud J., Audfray A., Imberty A., Binding sugars: from natural lectins to synthetic receptors and engineered neolectins, Chem. Soc. Rev., 2013, 42, 4798-4813.

  • [27] Minko T., Drug targeting to the colon with lectins and neoglycoconjugates, Adv. Drug Deliv. Rev., 2004, 56, 491-509.

  • [28] Varrot A., Blanchard B., Imberty A. Lectin binding and its structural basic. In: Wang B, Boons G-J, editors. Carbohydrate Recognition: Biological Problems, Methods and Applications: Wiley; 2011.

  • [29] Goldstein I.J., Poretz R.D. Isolation, physicochemical characterization, and carbohydrate-binding specificity. The Lectins: Properties, Functions, and Applications in Biology and Medicine: Orlando: Academic Press Inc.; 1986. p. 33-243.

  • [30] Ieth C., Lütteke T., Frank M. Bioinformatics for glycobioogy and glycomics: an introduction: Wiley-Blackwell; 2009.

  • [31] Drake P.M., Cho W., Li B., Prakobphol A., Johansen E., Anderson N.L., et al., Sweetening the pot: adding glycosylation to the biomarker discovery equation, Clin. Chem., 2010, 56, 223-236.

  • [32] Yamazaki N., Kojima S., Bovin N.V., Andre S., Gabius S., Gabius H.J., Endogenous lectins as targets for drug delivery, Adv. Drug Deliv. Rev., 2000, 43, 225-244.

  • [33] Hsu K.L., Mahal L.K., A lectin microarray approach for the rapid analysis of bacterial glycans, Nat. Protocols, 2006, 1, 543-549.

  • [34] Hirabayashi J., Glycome ‚fingerprints‘ provide definitive clues to HIV origins, Nat. Chem. Biol., 2009, 5, 198-199.

  • [35] Mislovičová D., Gemeiner P., Kozarova A., Kožár T., Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics, Biologia, 2009, 64, 1-19.

  • [36] Bertók T., Šefčovičová J., Gemeiner P., Tkáč J., Lektinomika: Nástroj pre klinickú diagnostiku, Chem. Listy, 2012, 106, 10-26.

  • [37] Bertók T., Katrlík J., Gemeiner P., Tkac J., Electrochemical lectin based biosensors as a label-free tool in glycomics, Microchim. Acta, 2012, 180, 1-13.

  • [38] https://www.vectorlabs.com/, 2012, Vector Laboratories.

  • [39] Dube D.H., Bertozzi C.R., Glycans in cancer and inflammation- -potential for therapeutics and diagnostics, Nat. Rev. Drug Discov., 2005, 4, 477-488.

  • [40] Svarovsky S.A., Joshi L., Cancer glycan biomarkers and their detection – past, present and future, Anal. Methods, 2014, 6, 3918-3936.

  • [41] Meezan E., Wu H.C., Black P.H., Robbins P.W., Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography, Biochemistry, 1969, 8, 2518-2524.

  • [42] Kim E.H., Misek D.E., Glycoproteomics-based identification of cancer biomarkers, Int. J. Proteom., 2011, 2011, 601937.

  • [43] Kim Y.J., Varki A., Perspectives on the significance of altered glycosylation of glycoproteins in cancer, Glycoconjugate J., 1997, 14, 569-576.

  • [44] Fernandes B., Sagman U., Auger M., Demetrio M., Dennis J.W., Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia, Cancer Res., 1991, 51, 718-723.

  • [45] Seelentag W.K., Li W.P., Schmitz S.F., Metzger U., Aeberhard P., Heitz P.U., et al., Prognostic value of beta1,6-branched oligosaccharides in human colorectal carcinoma, Cancer Res., 1998, 58, 5559-5564.

  • [46] Burchell J., Poulsom R., Hanby A., Whitehouse C., Cooper L., Clausen H., et al., An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas, Glycobiology, 1999, 9, 1307-1311.

  • [47] Peracaula R., Tabares G., Royle L., Harvey D.J., Dwek R.A., Rudd P.M., et al., Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins, Glycobiology, 2003, 13, 457-470.

  • [48] Thompson S., Dargan E., Turner G.A., Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer, Cancer Lett., 1992, 66, 43-48.

  • [49] Misonou Y., Shida K., Korekane H., Seki Y., Noura S., Ohue M., et al., Comprehensive clinico-glycomic study of 16 colorectal cancer specimens: Elucidation of aberrant glycosylation and its mechanistic causes in colorectal cancer cells, J. Proteome Res., 2009, 8, 2990-3005.

  • [50] Aubert M., Panicot L., Crotte C., Gibier P., Lombardo D., Sadoulet M.O., et al., Restoration of alpha(1,2) fucosyltransferase activity decreases adhesive and metastatic properties of human pancreatic cancer cells, Cancer Res., 2000, 60, 1449-1456.

  • [51] Nakamori S., Kameyama M., Imaoka S., Furukawa H., Ishikawa O., Sasaki Y., et al., Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study, Cancer Res., 1993, 53, 3632-3637.

  • [52] Atkinson A.J., Colburn W.A., DeGruttola V.G., DeMets D.L., Downing G.J., Hoth D.F., et al., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin. Pharm. Therap., 2001, 69, 89-95.

  • [53] Majkić-Singh N., What is a biomarker? From its discovery to clinical application, J. Med. Biochem., 2011, 30.

  • [54] Li J., Li S., Yang C.F., Electrochemical biosensors for cancer biomarker detection, Electroanal., 2012, 24, 2213-2229.

  • [55] Etzioni R., Urban N., Ramsey S., McIntosh M., Schwartz S., Reid B., et al., The case for early detection, Nat. Rev. Cancer, 2003, 3, 243-252.

  • [56] Saldova R., Royle L., Radcliffe C.M., Abd Hamid U.M., Evans R., Arnold J.N., et al., Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG, Glycobiology, 2007, 17, 1344-1356.

  • [57] Turner G.A., Goodarzi M.T., Thompson S., Glycosylation of alpha-1-proteinase inhibitor and haptoglobin in ovarian cancer: evidence for two different mechanisms, Glycoconjugate J., 1995, 12, 211-218.

  • [58] Chen K., Gentry-Maharaj A., Burnell M., Steentoft C., Marcos- Silva L., Mandel U., et al., Microarray glycoprofiling of CA125 improves differential diagnosis of ovarian cancer, J. Proteome Res., 2013, 12, 1408-1418.

  • [59] Saldova R., Struwe W., Wynne K., Elia G., Duffy M., Rudd P., Exploring the glycosylation of serum CA125, Int. J. Mol. Sci., 2013, 14, 15636-15654.

  • [60] Cazet A., Julien S., Bobowski M., Burchell J., Delannoy P., Tumour-associated carbohydrate antigens in breast cancer, Breast Cancer Res., 2010, 12, 204.

  • [61] Park S.Y., Yoon S.J., Jeong Y.T., Kim J.M., Kim J.Y., Bernert B., et al., N-glycosylation status of beta-haptoglobin in sera of patients with colon cancer, chronic inflammatory diseases and normal subjects, Int. J. Cancer, 2010, 126, 142-155.

  • [62] Vercoutter-Edouart A.S., Slomianny M.C., Dekeyzer-Beseme O., Haeuw J.F., Michalski J.C., Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells, Proteomics, 2008, 8, 3236-3256.

  • [63] Saeland E., Belo A.I., Mongera S., van Die I., Meijer G.A., van Kooyk Y., Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients, Int. J. Cancer, 2012, 131, 117-128.

  • [64] Zhao Y.P., Ruan C.P., Wang H., Hu Z.Q., Fang M., Gu X., et al., Identification and assessment of new biomarkers for colorectal cancer with serum N-glycan profiling, Cancer, 2012, 118, 639- 650.

  • [65] Qiu Y., Patwa T.H., Xu L., Shedden K., Misek D.E., Tuck M., et al., Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot, J. Proteome Res., 2008, 7, 1693-1703.

  • [66] Li C., Simeone D.M., Brenner D.E., Anderson M.A., Shedden K.A., Ruffin M.T., et al., Pancreatic cancer serum detection using a lectin/glyco-antibody array method, J. Proteome Res., 2009, 8, 483-492.

  • [67] Zhao J., Patwa T.H., Qiu W., Shedden K., Hinderer R., Misek D.E., et al., Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera, J. Proteome Res., 2007, 6, 1864-1874.

  • [68] Miyoshi E., Nakano M., Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures, Proteomics, 2008, 8, 3257-3262.

  • [69] Fujimura T., Shinohara Y., Tissot B., Pang P.C., Kurogochi M., Saito S., et al., Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects, Int. J. Cancer, 2008, 122, 39-49.

  • [70] Ohyama C., Hosono M., Nitta K., Oh-eda M., Yoshikawa K., Habuchi T., et al., Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy, Glycobiology, 2004, 14, 671-679.

  • [71] Takeya A., Hosomi O., Nishijima H., Ohe Y., Sugahara K., Sagi M., et al., Presence of beta-linked GalNAc residues on N-glycans of human thyroglobulin, Life Sci., 2007, 80, 538-545.

  • [72] Yamamoto K., Tsuji T., Tarutani O., Osawa T., Structural changes of carbohydrate chains of human thyroglobulin accompanying malignant transformations of thyroid glands, Eur. J. Biochem., 1984, 143, 133-144.

  • [73] Naitoh A., Aoyagi Y., Asakura H., Highly enhanced fucosylation of serum glycoproteins in patients with hepatocellular carcinoma, J. Gastroenter. Hepatol., 1999, 14, 436-445.

  • [74] Hoagland L.F.t., Campa M.J., Gottlin E.B., Herndon J.E., 2nd, Patz E.F., Jr., Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer, Cancer, 2007, 110, 2260-2268.

  • [75] Gutman S., Kessler L.G., The US Food and Drug Administration perspective on cancer biomarker development, Nat. Rev. Cancer, 2006, 6, 565-571.

  • [76] Badr H.A., Alsadek D.M., Darwish A.A., Elsayed A.I., Bekmanov B.O., Khussainova E.M., et al., Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers, Expert Rev. Proteomics, 2014, 11, 227-236.

  • [77] Balog C.I., Stavenhagen K., Fung W.L., Koeleman C.A., McDonnell L.A., Verhoeven A., et al., N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation, Mol. Cell. Proteomics, 2012, 11, 571-585.

  • [78] Schmidt M.M., Thurber G.M., Wittrup K.D., Kinetics of anticarcinoembryonic antigen antibody internalization: effects of affinity, bivalency, and stability, Cancer Immunol. Immunother., 2008, 57, 1879-1890.

  • [79] Ahn Y.H., Ji E.S., Shin P.M., Kim K.H., Kim Y.-S., Ko J.H., et al., A multiplex lectin-channel monitoring method for human serum glycoproteins by quantitative mass spectrometry, Analyst, 2012, 137, 691-703.

  • [80] Cheng T.M., Lee T.C., Tseng S.H., Chu H.L., Pan J.P., Chang C.C., Human haptoglobin phenotypes and concentration determination by nanogold-enhanced electrochemical impedance spectroscopy, Nanotechnology, 2011, 22, 245105.

  • [81] Thompson S., Turner G.A., Elevated levels of abnormallyfucosylated haptoglobins in cancer sera, Br. J. Cancer, 1987, 56, 605-610.

  • [82] Zhang B., Cai F.F., Zhong X.Y., An overview of biomarkers for the ovarian cancer diagnosis, Eur. J. Obstetrics Gynec. Reprod. Biol., 2011, 158, 119-123.

  • [83] World Health Organization I.A.f.R.o.C. Globocan 2012. Available from: http://globocan.iarc.fr/Default.aspx.

  • [84] World Health Organization I.A.f.R.o.C. European Cancer Observatory 2012. Available from: http://eu-cancer.iarc.fr/.

  • [85] Christiansen M.N., Chik J., Lee L., Anugraham M., Abrahams J.L., Packer N.H., Cell surface protein glycosylation in cancer, Proteomics, 2014, 14, 525-546.

  • [86] Bhoola S., Hoskins W.J., Diagnosis and management of epithelial ovarian cancer, Obstetrics Gynecol., 2006, 107, 1399-1410.

  • [87] Eltabbakh G.H., Mount S.L., Beatty B., Simmons-Arnold L., Cooper K., Morgan A., Factors associated with cytoreducibility among women with ovarian carcinoma, Gynecol. Oncol., 2004, 95, 377-383.

  • [88] Biskup K., Braicu E.I., Sehouli J., Fotopoulou C., Tauber R., Berger M., et al., Serum glycome profiling: A biomarker for diagnosis of ovarian cancer, J. Proteome Res., 2013, 12, 4056-4063.

  • [89] Park C.W., Jo Y., Jo E.J., Enhancement of ovarian tumor classification by improved reproducibility in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of serum glycans, Anal. Biochem., 2013, 443, 58-65.

  • [90] Moore R.G., McMeekin D.S., Brown A.K., DiSilvestro P., Miller M.C., Allard W.J., et al., A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass, Gynecol. Oncol., 2009, 112, 40-46.

  • [91] Ghasemi N., Ghobadzadeh S., Zahraei M., Mohammadpour H., Bahrami S., Ganje M.B., et al., HE4 combined with CA125: favorable screening tool for ovarian cancer, Med. Oncol., 2014, 31, 808.

  • [92] La Belle J.T., Fairchild A., Demirok U.K., Verma A., Method for fabrication and verification of conjugated nanoparticle-antibody tuning elements for multiplexed electrochemical biosensors, Methods, 2013, 61, 39-51.

  • [93] Yurkovetsky Z., Skates S., Lomakin A., Nolen B., Pulsipher T., Modugno F., et al., Development of a multimarker assay for early detection of ovarian cancer, J. Clin. Oncol., 2010, 28, 2159-2166.

  • [94] Vermassen T., Speeckaert M.M., Lumen N., Rottey S., Delanghe J.R., Glycosylation of prostate specific antigen and its potential diagnostic applications, Clin. Chim. Acta, 2012, 413, 1500-1505.

  • [95] Cary K.C., Cooperberg M.R., Biomarkers in prostate cancer surveillance and screening: past, present, and future, Ther. Adv. Urol., 2013, 5, 318-329.

  • [96] Hori S., Blanchet J.S., McLoughlin J., From prostate-specific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer, BJU Int., 2013, 112, 717-728.

  • [97] Velonas V.M., Woo H.H., Remedios C.G., Assinder S.J., Current status of biomarkers for prostate cancer, Int. J. Mol. Sci., 2013, 14, 11034-11060.

  • [98] Crawford E.D., Ventii K., Shore N.D., New biomarkers in prostate cancer, Oncology, 2014, 28, 135-142.

  • [99] Okada T., Sato Y., Kobayashi N., Sumida K., Satomura S., Matsuura S., et al., Structural characteristics of the N-glycans of two isoforms of prostate-specific antigens purified from human seminal fluid, Biochim. Biophys. Acta, 2001, 1525, 149- 160.

  • [100] Gilgunn S., Conroy P.J., Saldova R., Rudd P.M., O‘Kennedy R.J., Aberrant PSA glycosylation--a sweet predictor of prostate cancer, Nat. Rev. Urol., 2013, 10, 99-107.

  • [101] Kuno A., Kato Y., Matsuda A., Kaneko M.K., Ito H., Amano K., et al., Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification, Mol. Cell. Proteomics : MCP, 2009, 8, 99-108.

  • [102] Duverger E., Lamerant-Fayel N., Frison N., Monsigny M., Carbohydrate-lectin interactions assayed by SPR, Methods Mol. Biol., 2010, 627, 157-178.

  • [103] Safina G., Duran Iu B., Alasel M., Danielsson B., Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins, Talanta, 2011, 84, 1284-1290.

  • [104] Choi Y.E., Kwak J.W., Park J.W., Nanotechnology for early cancer detection, Sensors, 2010, 10, 428-455.

  • [105] Qian X., Peng X.-H., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin D.M., et al., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotechnol., 2008, 26, 83-90.

  • [106] Liu X., Dai Q., Austin L., Coutts J., Knowles G., Zou J., et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering, J. Am. Chem. Soc., 2008, 130, 2780-2782.

  • [107] Gao X., Cui Y., Levenson R.M., Chung L.W.K., Nie S., In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 2004, 22, 969-976.

  • [108] Gao X., Yang L., Petros J.A., Marshall F.F., Simons J.W., Nie S., In vivo molecular and cellular imaging with quantum dots, Curr. Opin. Biotechnol., 2005, 16, 63-72.

  • [109] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.

  • [110] Iijima S., Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363, 603-605.

  • [111] Geim A.K., Novoselov K.S., The rise of graphene, Nat. Mater., 2007, 6, 183-191.

  • [112] Geim A.K., Graphene: status and prospects, Science, 2009, 324, 1530-1534.

  • [113] Novoselov K.S., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S., et al., Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.

  • [114] Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, 39, 228-240.

  • [115] Reichardt N.C., Martín-Lomas M., Penadés S., Glyconanotechnology, Chem. Soc. Rev., 2013, 42, 4358-4376.

  • [116] Park D.W., Kim Y.H., Kim B.S., So H.M., Won K., Lee J.O., et al., Detection of tumor markers using single-walled carbon nanotube field effect transistors, J. Nanosci. Nanotechnol., 2006, 6, 3499-3502.

  • [117] Kerman K., Saito M., Tamiya E., Yamamura S., Takamura Y., Nanomaterial-based electrochemical biosensors for medical applications, Trends Anal. Chem., 2008, 27, 585-592.

  • [118] Perumal V., Hashum U., Advances in biosensors: Principle, architecture and applications, J. Appl. Biomed., 2014, 12, 1-15.

  • [119] Lee S.Y., Hwang S.Y. Electrical and electrochemical immunosensor for cancer study. Biosensors and Cancer: Science Publishers; 2012. p. 125-145.

  • [120] Yun Y.-H., Eteshola E., Bhattacharya A., Dong Z., Shim J.-S., Conforti L., et al., Tiny medicine: Nanomaterial-based biosensors, Sensors, 2009, 9, 9275-9299.

  • [121] Xu J.J., Zhao W.W., Song S., Fan C., Chen H.Y., Functional nanoprobes for ultrasensitive detection of biomolecules: an update, Chem. Soc. Rev., 2014, 43, 1601-1611.

  • [122] Wang Y., Qu K., Tang L., Li Z., Moore E., Zeng X., et al., Nanomaterials in carbohydrate biosensors, Trends Anal. Chem., 2014, 58, 54-70.

  • [123] Mu B., Zhang J., McNicholas T.P., Reuel N.F., Kruss S., Strano M.S., Recent advances in molecular recognition based on nanoengineered platforms, Acc. Chem. Res., 2014, 47, 979-988.

  • [124] Kluková Ľ., Bertók T., Kasák P., Tkac J., Nanoscale controlled architecture for development of ultrasensitive lectin biosensors applicable in glycomics, Anal. Methods, 2014, 6, 4922-4931.

  • [125] Katz E., Willner I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA sensors, and enzyme biosensors, Electroanal., 2003, 15, 913- 947.

  • [126] Thévenot D.R., Toth K., Durst R.A., Wilson G.S., Electrochemical biosensors: recommended definitions and classification, Biosens. Bioelectron., 2001, 16, 121-131.

  • [127] Bertok T., Šefčovičová J., Gemeiner P., Tkac J., Vývoj a súčasné trendy pri príprave nanoštrukturovaných biosenzorov, Chem. Listy, 2012, 106, 174-181.

  • [128] Tkac J., Davis J.J., An optimised electrode pre-treatment for SAM formation on polycrystalline gold, J. Electroanal. Chem., 2008, 621, 117-120.

  • [129] Cao G., Wang Y. Nanostructures and nanomaterials: Synthesis, properties, and applications. 2 ed: World Scientific Publishing; 2011.

  • [130] Alvarez T.V. Highly sensitive nanomaterial based electrochemical biosensor: Arizona State University; 2009.

  • [131] Zhou Y., Xu Z., Wang M., Meng X., Yin H., Electrochemical immunoassay platform for high sensitivity detection of indole- 3-acetic acid, Electrochim. Acta, 2013, 96, 66-73.

  • [132] Sluyters-Rehbach M., Sluyters J.H., On the impedance of galvanic cells XXVIII. The frequency-dependence of the electrode admittance for systems with first-order homogeneous chemical reactions and reactant adsorption occurring simultaneously, J. Electroanal. Chem. Interf. Electrochem., 1969, 23, 457-474.

  • [133] Ershler B., Investigation of electrode reactions by the method of charging-curves and with the aid of alternating currents, Discuss. Faraday Soc., 1947, 1, 269-277.

  • [134] Hu Y., Zuo P., Ye B.C., Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin, Biosens. Bioelectron., 2013, 43, 79-83.

  • [135] Bertok T., Sediva A., Katrlik J., Gemeiner P., Mikula M., Nosko M., et al., Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles, Talanta, 2013, 108, 11-18.

  • [136] Suni I.I., Impedance methods for electrochemical sensors using nanomaterials, Trends Anal. Chem., 2008, 27, 604-611.

  • [137] Scouten W.H., Luong J.H.T., Stephen Brown R., Enzyme or protein immobilization techniques for applications in biosensor design, Trends Biotechnol., 1995, 13, 178-185.

  • [138] Li S., Singh J., Li H., Banerjee I.A. Biosensor Nanomaterials: Wiley-VCH Verlag GmbH&Co. ; 2011.

  • [139] Putzbach W., Ronkainen N., Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review, Sensors, 2013, 13, 4811-4840.

  • [140] Davis J.J., Tkac J., Humphreys R., Buxton A.T., Lee T.A., Ko Ferrigno P., Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms, Anal. Chem., 2009, 81, 3314-3320.

  • [141] Davis J.J., Tkac J., Laurenson S., Ferrigno P.K., Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold, Anal. Chem., 2007, 79, 1089-1096.

  • [142] Ericsson E. Biosensor surface chemistry for oriented protein immobilization and biochip patterning: Linköping University; 2013.

  • [143] Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005, 105, 1103-1170.

  • [144] Gooding J.J., Mearns F., Yang W., Liu J., Self-assembled monolayers into the 21st century: Recent advances and applications, Electroanal., 2003, 15, 81-96.

  • [145] Hushegyi A., Tkac J., Are glycan biosensors an alternative to glycan microarrays?, Anal. Methods, 2014, 6, 6610-6620.

  • [146] Ron H., Matlis S., Rubinstein I., Self-assembled monolayers on oxidized metals. 2. gold surface oxidative pretreatment, monolayer properties, and depression formation, Langmuir, 1998, 14, 1116-1121.

  • [147] Bertok T., Gemeiner P., Mikula M., Gemeiner P., Tkac J., Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid, Microchim. Acta, 2013, 180, 151-159.

  • [148] Fischer L.M., Tenje M., Heiskanen A.R., Masuda N., Castillo J., Bentien A., et al., Gold cleaning methods for electrochemical detection applications, Microelectronic Eng., 2009, 86, 1282- 1285.

  • [149] Chen S., LaRoche T., Hamelinck D., Bergsma D., Brenner D., Simeone D., et al., Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays, Nat. Methods, 2007, 4, 437-444.

  • [150] Haab B.B., Antibody-lectin sandwich arrays for biomarker and glycobiology studies, Expert Rev. Proteomics, 2010, 7, 9-11.

  • [151] Chen H., Jiang C., Yu C., Zhang S., Liu B., Kong J., Protein chips and nanomaterials for application in tumor marker immunoassays, Biosens. Bioelectron., 2009, 24, 3399-3411.

  • [152] La Belle J.T., Gerlach J.Q., Svarovsky S., Joshi L., Label-free impedimetric detection of glycan−lectin interactions, Anal. Chem., 2007, 79, 6959-6964.

  • [153] Yang H., Li Z., Wei X., Huang R., Qi H., Gao Q., et al., Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes, Talanta, 2013, 111, 62-68.

  • [154] Oliveira M.D.L., Correia M.T.S., Diniz F.B., A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis, Synth. Met., 2009, 159, 2162-2164.

  • [155] Nagaraj V.J., Aithal S., Eaton S., Bothara M., Wiktor P., Prasad S., NanoMonitor: a miniature electronic biosensor for glycan biomarker detection, Nanomedicine, 2010, 5, 369-378.

  • [156] Bertok T., Klukova L., Sediva A., Kasak P., Semak V., Micusik M., et al., Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples, Anal. Chem., 2013, 85, 7324-7332.

  • [157] Silva M.L.S., Gutiérrez E., Rodríguez J.A., Gomes C., David L., Construction and validation of a Sambucus nigra biosensor for cancer-associated STn antigen, Biosens. Bioelectron., 2014, 57, 254-261.

  • [158] Kongsuphol P., Ng H.H., Pursey J.P., Arya S.K., Wong C.C., Stulz E., et al., EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum, Biosens. Bioelectron., 2014, 61, 274-279.

  • [159] Luo X., Xu Q., James T., Davis J.J., Redox and label-free array detection of protein markers in human serum, Anal. Chem., 2014, 86, 5553-5558.

  • [160] Xia N., Deng D., Zhang L., Yuan B., Jing M., Du J., et al., Sandwichtype electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles, Biosens. Bioelectron., 2013, 43, 155-159.

  • [161] Cao J.T., Hao X.Y., Zhu Y.D., Sun K., Zhu J.J., Microfluidic platform for the evaluation of multi-glycan expressions on living cells using electrochemical impedance spectroscopy and optical microscope, Anal. Chem., 2012, 84, 6775-6782.

OPEN ACCESS

Journal + Issues

Search