Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2005

Speciation analysis of inorganic form of arsenic in ground water samples by hydride generation atomic absorption spectrometry with insitu trapping in graphite tube

  • Przemysław Niedzielski EMAIL logo and Marcin Siepak
From the journal Open Chemistry

Abstract

This paper presents the results of a study on the optimization of the determination of total arsenic and its species using the absorption atomic spectrometry method combined with hydride generation and in-situ concentration on the inner walls of the graphite tube. To ensure a maximum efficiency of the in-situ analyte concentration on the graphite tube walls, a palladium modifier subjected to preliminary thermal reduction was used. The limits of detection (3σ) were 0.019 ng/mL for total As and 0.031 ng/mL for As(III) at the preliminary analyte concentration for 60s. The optimised procedure of the analyte concentration on the inner walls of the atomiser (graphite tube) was applied for determinations of arsenic in samples of ground water. The content of arsenic in the samples studied varied from 0.21 ng/mL to 0.80 ng/mL for As(III), and from 0.19 ng/mL to 1.24 ng/mL for As(V).

[1] S.N. Willie: “First order speciation of As using flow injection hydride generation atomic absorption spectrometry with in-situ trapping of the arsine in a graphite furnace”, Spectrochim. Acta B, Vol. 51, (1996), pp. 1781–1790. http://dx.doi.org/10.1016/S0584-8547(96)01528-510.1016/S0584-8547(96)01528-5Search in Google Scholar

[2] S.J. Hill, T.A. Arowolo, O.T. Butler, S.R.N. Chenery, J.M. Cook, M.S. Cresser and D.L. Miles: “Atomic spectrometry update. Environmental analysis”, J. Anal. At. Spectrom. Vol. 17, (2002), pp. 284–317. http://dx.doi.org/10.1039/b200833p10.1039/b200833pSearch in Google Scholar

[3] A. Taylor, S. Branch, D. Halls, M. Patriarca and M. White: “Atomic spectrometry update. Clinical and biological materials, foods and beverages”, J. Anal. At. Spectrom. Vol. 17, (2002), pp. 414–455. http://dx.doi.org/10.1039/b201456b10.1039/b201456bSearch in Google Scholar

[4] H. Matusiewicz and R.E. Sturgeon: “Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace”, Spectrochimica Acta B, Vol. 51, (1996), pp. 377–397. http://dx.doi.org/10.1016/0584-8547(95)01419-510.1016/0584-8547(95)01419-5Search in Google Scholar

[5] P. Bermejo-Barrera, J. Moreda-Pineiro, A. Moreda-Pineiro and A. Bermjo-Barrera: “Selective medium reaction for the arsenic(III), arsenic(V) dimethylarsonic acid and monomehylarsonic acid determination in waters by hydride generation on-line electrothermal atomic absorption spectrometry with in situ preconcentration on Zrcoated graphite tubes”, Analytica Chimica Acta, Vol. 374 (1998), pp. 231–240. http://dx.doi.org/10.1016/S0003-2670(98)00515-710.1016/S0003-2670(98)00515-7Search in Google Scholar

[6] J.Y. Cabon and N. Cabon: “Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry Stability of As(III)”, Analytica Chimica Acta, Vol. 418, (2000), pp. 19–31. http://dx.doi.org/10.1016/S0003-2670(00)00948-X10.1016/S0003-2670(00)00948-XSearch in Google Scholar

[7] H. Matusiewicz and M. Mikołajczak: “Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction electrothermal AAS”, J. Anal. At. Spectrom., Vol. 16, (2001), pp. 652–657. http://dx.doi.org/10.1039/b100312g10.1039/B100312GSearch in Google Scholar

[8] M. Wałcerz, S. Garboś, E. Bulska and A. Hulanicki: “Continuous flow hydride generation for the preconcentration and determination of arsenic and antimony by GFAAS”, Fresenius J. Anal. Chem., Vol. 350, (1994), pp. 662–666. http://dx.doi.org/10.1007/BF0032366010.1007/BF00323660Search in Google Scholar

[9] E. Denkhaus, A. Golloch, T.U. Kampen, M. Nierfeld and U. Telgherd: “Elactrolytic hydride generation electrothermal atomic absorption spectrometry—in situ trapping of As on diffrent pre-conditioned end-heated graphite tubes”, Fresenius J. Anal. Chem., Vol. 361, (1998), pp. 733–737. http://dx.doi.org/10.1007/s00216005100710.1007/s002160051007Search in Google Scholar

[10] L. Liang, S. Lazoff, C. Chan, M. Horvat and J.S. Woods: “Determination of arsenic in ambient water at sub-part-per-trillion levels by hydride generation Pd coated platform collection and GFAAS detection”, Talanta, Vol. 47, (1998), pp. 569–583. http://dx.doi.org/10.1016/S0039-9140(98)00079-410.1016/S0039-9140(98)00079-4Search in Google Scholar

[11] P. Niedzielski, M. Siepak and J. Siepak: “Comparison of modifiers for determination of arsenic, antimony and selenium by absorption atomic spectrometry with atomization in a graphite tube or hydride generation and in-situ preconcentration in a graphite tube”, Microchem. J., Vol. 72, (2002), pp. 137–145. http://dx.doi.org/10.1016/S0026-265X(01)00161-810.1016/S0026-265X(01)00161-8Search in Google Scholar

[12] B.T. Kildahl and W. Lund: “Determination of arsenic and antimony in wine by electrothermal atomic absorption spectrometry”, Fresenius J. Anal. Chem., Vol. 354, (1996), pp. 93–96. http://dx.doi.org/10.1007/s00216960001510.1007/s002169600015Search in Google Scholar

[13] Z. Ni, Z. Rao and M. Li: “Minimalization of phosphate interference in the direct determination of arsenic in urine by electrothermal atomic absorption spectrometry”, Anal. Chem. Acta, Vol. 334, (1996), pp. 177–182. http://dx.doi.org/10.1016/S0003-2670(96)00293-010.1016/S0003-2670(96)00293-0Search in Google Scholar

[14] H. O. Haug and Y. Liao: “Investigation of the automated determination of As, Sb and Bi by flow-injection hydride generation using in-situ trapping on stable coatings in graphite furnace atomic absorption spectrometry”, Fresenius J. Anal. Chem., Vol. 356, (1996), pp. 435–444. Search in Google Scholar

[15] É.C. Lima, R.V. Barbosa, J.L. Brasil, H.D.P. Santos: “Evaluation of different permanent modifiers for the determination of arsenic, cadmium and lead in environmental samples by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 1523–1529. http://dx.doi.org/10.1039/b205905c10.1039/b205905cSearch in Google Scholar

[16] A.B. Volynsky: “Investigation of the mechanisms of the action of chemical modifiers for electrothermal atomic absorption spectrometry: what for and how?”, Spectrochimica Acta Part B, Vol. 53, (1998), pp. 139–149. http://dx.doi.org/10.1016/S0584-8547(97)00124-910.1016/S0584-8547(97)00124-9Search in Google Scholar

[17] P.R. Walsh, L. Fasching and R.A. Duce: “Matrix Effekts and Their Control during the Flameless Atomic Absorption Determination of Arsenic”, Anal. Chem., Vol. 48, (1976), pp. 1014–1015. http://dx.doi.org/10.1021/ac60371a00410.1021/ac60371a004Search in Google Scholar

[18] Y. Hirano, K. Yasuda and K. Hirokawa, “Lessening unexpected increases of atomic vapor temperature of arsenic in graphite furnace atomic absorption spectrometry”, Anal Scienc., Vol. 10, (1994), pp. 480–484. Search in Google Scholar

[19] J.Y. Cabon and N. Cabon: “Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry Stability of As(III)”, Anal. Chim. Acta., Vol. 418, (2000), pp. 19–31. http://dx.doi.org/10.1016/S0003-2670(00)00948-X10.1016/S0003-2670(00)00948-XSearch in Google Scholar

[20] H.M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch and B. Welz: Proceedings of 4 th European Furnace Symposium (1999), Kosice, Slovakia, 2000, pp. 11–20. Search in Google Scholar

[21] P. Niedzielski, M. Siepak, J. Siepak and J. Przybyłek: “Determination of different forms of arsenic antimony and selenium in water samples using hydride generation”, Pol. J. Environ. Stud., Vol. 11, (2002), pp. 219–224. Search in Google Scholar

[22] J. Dedina and D.L. Tsalev: Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester, 1995. Search in Google Scholar

[23] J. Stummeyer, B. Harazim and T. Wippermann: “Speciation of arsenic in water samples by high-performance liquid chromatography-hydride generation-atomic absorption spectrometry at trace levels using a post-column reaction system”, Fresenius J. Anal. Chem., Vol. 354, (1996), pp. 344–351. Search in Google Scholar

[24] G. Henze, W. Wagner and S. Sander: “Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples”, Fresenius J. Anal. Chem., Vol. 358, (1997), pp. 741–744. http://dx.doi.org/10.1007/s00216005050110.1007/s002160050501Search in Google Scholar

[25] J. Chwastowska, E. Sterlińska, W. Zmijewska and J. Dudek: “Application of a cheleting resin loaded with thionalide to speciation analisis of As(III,V) in natural waters”, Chem. Anal., Vol. 41, (1996), pp. 45–53. Search in Google Scholar

[26] D. Chakraborti, W. De Jonghe and F. Adams: “The determination of arsenic by electrothermal atomic absorption spectrometry with a graphite furnace”, Anal. Chim. Acta., Vol. 120, (1980), pp. 121–127. http://dx.doi.org/10.1016/S0003-2670(01)84354-310.1016/S0003-2670(01)84354-3Search in Google Scholar

[27] S. Saverwyns, X. Zhang, F. Vanhaecke, R. Cornelis, L. Moens and R. Dams: “Speciation of Six Arsenic Compounds Using High-performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry With Sample Introduction by Termospray Nebulization”, J. Anal. At. Spectrom., Vol. 12, (1997), pp. 1047–1052. http://dx.doi.org/10.1039/a701554b10.1039/a701554bSearch in Google Scholar

[28] P. Niedzielski, J. Siepak and M. Siepak: “Total Content of Arsenic, Antimony and Selenium in Groundwater Samples from Western Poland”, Pol. J. Environ. Stud., Vol. 5, (2001), pp. 347–350. Search in Google Scholar

[29] P.L. Smedley and W.M. Edmunds: “Redox Patterns and Trace-Element Behvior in the East Midlands Triassic Sandstone Aquifer”, U.K. Ground Water, Vol. 40, (2002), pp. 44–58. http://dx.doi.org/10.1111/j.1745-6584.2002.tb02490.x10.1111/j.1745-6584.2002.tb02490.xSearch in Google Scholar

[30] G. Tao and E.H. Hansen: “Determination of Ultra-trace Amounts of Selenium(IV) by Flow Injection Hydride Generation Atomic Absorption Spectrometry With Online Preconcentration by Coprecipitation With Lanthanum Hydroxide”, Analyst, Vol. 119, (1994), pp. 333–337. http://dx.doi.org/10.1039/an994190033310.1039/an9941900333Search in Google Scholar

[31] L.L. Yang and D.Q. Zhang: “In situ preconcentration and determination of trace arsenic in botanical samples by hydride generation-graphite furnace atomic absorption spectrometry with Pd−Zr as chemical modifier”, Anal. Chim. Acta, Vol. 491, (2003), pp. 91–97. http://dx.doi.org/10.1016/S0003-2670(03)00798-010.1016/S0003-2670(03)00798-0Search in Google Scholar

Published Online: 2005-3-1
Published in Print: 2005-3-1

© 2005 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/BF02476240/html
Scroll to top button