Synthesis, characterization and magnetic investigation of (NH4)0.5Mn1.25(H2O)2[BP2O8]·0.5H2O

B. Birsöz 1 , A. Baykal 1 , M. Toprak 2  und Y. Köseoglu 3
  • 1 Department of Chemistry, Fatih University, B.Çekmece, 34500, Istanbul, Turkey
  • 2 Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
  • 3 Department of Physics, Fatih University, B.Çekmece, 34500, Istanbul, Turkey


A new borophosphate compound with the composition (NH4)χ Mn((3−χ)/2)(H2O)2 [BP2O8]·(1−x)H2O was prepared under mild hydrothermal conditions and characterized by X-ray powder diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) methods. The title compound was synthesized from MnCl2·2H2O, H3BO3, and (NH4)2HPO4 with variable molar ratios by heating at 180 °C for 7 days in an autoclave. The X-ray diffraction data of the water insoluble polycrystalline powder was indexed using the TREOR program in hexagonal system with the unit cell parameters of a = 9.5104, c = 15.7108 Å, Z = 6 and the space group P65 (No.176). (NH4)χ Mn((3−χ)/2)(H2O)2 [BP2O8]·(1−x)H2O is isostructural with (NH4)χ M ((3−χ)2)/II (H2O)2 [BP2O8]·(1−x)H2O (MII = Co, Cd, Mg; x = 0.5–1). Its unit cell parameters and hkl values were in good agreement with the other isostructural compounds. This is the first report presenting both the synthetic details and the indexed X-ray powder diffraction pattern of this compound along with the characterization by FTIR, thermal gravimetric analysis, scanning electron microscopy and EPR.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] A. Baykal: in PhD Thesis, Middle East Technical University, Ankara/TURKEY, 1999.

  • [2] G. Gözel, A. Baykal, M. Kizilyalli and R. Kniep: “Solid-State Synthesis, X-ray Powder Investigation and IR Study of α-Mg3[BPO7]”, J. Eur. Ceram. Soc., Vol. 18, (1998), pp. 2241–2246.

  • [3] A. Baykal, G. Gözel, M. Kizilyalli, M. Toprak and R. Kniep: “X-ray Powder Diffraction and IR Study of CaBPO5”, Turk. J. Chem., Vol. 24, (2000), pp. 381–388.

  • [4] A. Baykal, M. Kizilyalli, G. Gözel and R. Kniep: “Synthesis of Strontium Borophosphate, SrBPO5 by Solid state and Hydrothermal Methods and Characterization”, Cryst. Res. Technol., Vol. 35, (2000), pp. 247–254.<247::AID-CRAT247>3.0.CO;2-9

  • [5] A.K. Cheetham, G. Ferey and T. Loiseau: “Open-Framework Inorganic Materials”, Angew. Chem., Vol. 38, (1999), pp. 3268–3292.<3268::AID-ANIE3268>3.0.CO;2-U

  • [6] A. Yilmaz, L. Tatar Yildirim, X. Bu, M. Kizilyalli and G.D. Stucky: “New Zeotype Borophosphates with Chiral Tetrahedral Topology: (H)0.5M1.25(H2O)1.5[BP2O8]·H2O (M= Co(II) and Mn(II)”, Cryst. Res. Technol., Vol. 40(6), (2005), pp. 579–585.

  • [7] M. Ge, W. Liu, H. Chen, M. Li, X. Yang and J. Zhao: “NH4Cd(H2O)2(BP2O8).0.72H2O: a New Borophosphate with Abnormal Structure Changes Caused by Hydrogen Interactions”, Z. Anorg. Allg. Chem., Vol. 631, (2005), pp. 1213–1217.

  • [8] G.J. Hutchings, I.D. Hudson and D.G. Timms: “Reactivation of Boron Phosphate Catalysts for the Synthesis of Isoprene from 2-Methylbutanal Dehydration”, J. Chem. Soc., Chem. Comm., Vol. 23, (1994), pp. 2717–2718.

  • [9] A. Baykal, M. Kizilyalli, M. Toprak and R. Kniep: “Hydrothermal and Microwave Synthesis of BPO4”, Turk. J. Chem., Vol. 25, (2001), pp. 425–432.

  • [10] R. Kniep, H. Engelhardt and C. Hauf: “A First Approach to Borophosphate Structural Chemistry”, Chem. Mater., Vol. 10, (1998), pp. 2930.

  • [11] R. Kniep, G. Schäfer, H. Engelhardt and I. Boy: “K[ZnBP2O8] and A[ZnBP2O8] (A=NH 4+, Rb+, Cs+): Zincoborophosphates as a New Class of Compounds with Tetrahedral Framework Structures”, Angew. Chem. Vol. 38, (1999), pp. 3641–3644.<3641::AID-ANIE3641>3.0.CO;2-B

  • [12] R.P. Bontchev, J. Do and A.J. Jacobson: “Templated Synthesis of Vanadium Borophosphate Cluster Anions”, Angew. Chem., Vol. 38, (1999), pp. 1937–1940.<1937::AID-ANIE1937>3.0.CO;2-5

  • [13] R.P. Bontchev, J. Do and A.J. Jacobson: “Synthesis and Characterization of the Layered Vanadium Borophosphate (Imidazolium)3.8(H3O)1.2[(VO)4(BO)2(PO4)5]·0.3H2O”, Inorg. Chem., Vol. 39, (2000), pp. 3320–3324.

  • [14] S.C. Sevov: “Synthesis and Structure of CoB2P3O12(OH)·C2H10N2: The First Metal Borophosphate with an Open Framework Structure”, Angew. Chem., Vol. 35, (1996), pp. 2630–2632.

  • [15] R. Kniep and G. Schäfer: “Isotype Borophosphate MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Verbindungen mit Tetraeder-Schichtverbänden”, Z. Anorg. Allg. Chem., Vol. 626, (2000), pp. 141–147.<141::AID-ZAAC141>3.0.CO;2-#

  • [16] G.G. Schäfer, H. Borrmann and R. Kniep: “MII(C4H12N2)[B2P3O12(OH)] (MII = Co, Zn): Synthesis and Crystal Structure of Novel Open Framework Borophosphates”, Z. Anorg. Allg. Chem., Vol. 627, (2001), pp. 61–67.<61::AID-ZAAC61>3.0.CO;2-O

  • [17] W.H. Flanke and T.E. Whyte: Perspectives in Molecular Sieve Science, American Chemical Society, Washington, D.C., 1998, pp. 15–32.

  • [18] S. Rosemarie: Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, 1992.

  • [19] C.J. Warren, C.R. Haushalter, D.J. Rose and J. Zubieta: “Three-Dimensional Organic/Inorganic Composite Materials: Hydrothermal Synthesis and Structural Characterization of the Open-Framework Oxovanadium Borophosphate [H3NCH2CH2NH3]2[(VO)5(H2O)O3POB(O)2OPO32]·1.5H2O”, Chem. Mater., Vol. 9, (1997), pp. 2694–2696.

  • [20] R. Kniep, H.G. Will, I. Boy and C. Röhr: “61 Helices from Tetrahedral Ribbons 1∞ [BP(O 83−]: Isostructural Borophosphates MIMII(H2O)2[BP2O8] · H2O (MI = Na, K; MII = Mg, Mn, Fe, Co, Ni, Zn) and Their Dehydration to Microporous Phases MIMII(H2O)[BP2O8] (p 1013–1014)”, Angew. Chem. Int. Ed. Engl., Vol. 36(9), (1997), pp. 1013–1014.

  • [21] A. Yilmaz, X. Bu, M. Kizilyalli and G.D. Stucky: “Fe(H2O)2BP2O8·H2O, a First Zeotype Ferriborophosphate with Chiral Tetrahedral Framework Topology”, Chem. Mater., Vol. 12, (2000), pp. 3243–3245.

  • [22] G. Schäfer, W. Carrillo-Cabrera, W. Schnelle, H. Borrmann and R. Kniep: “Synthesis and Crystal Structure of {(NH4)χ Co((3−χ)/2)}(H2O)2[BP2O8] · (1 − χ) H2O (χ ∼ 0.5)”, Z. Anorg. Allg. Chem., Vol. 628, (2002), pp. 289–294.<289::AID-ZAAC289>3.0.CO;2-H

  • [23] A. Baykal and M. Kizilyalli: “X-ray powder diffraction and IR study of NaMg(H2O)2[BP2O8] · H2O and NH4Mg(H2O)2[BP2O8] · H2O”, J. Mater. Sci., Vol. 35, (2000), pp. 4621–6426.

  • [24] W.E. Klee and G. Engel: “IR. Spectra of the Phosphate Ions in Various Apatites”, J. Inorg. Nucl. Chem., Vol. 32, (1970), pp. 1837–1843.

  • [25] K. Nakamoto: Infrared Spectra of Inorganic and Coordination Compounds, Plenum Press, New York, 1971.

  • [26] S.D. Ross: Inorganic Infrared and Raman Spectra, McGraw-Hill Press, London, 1972.

  • [27] A. Baykal and M. Kizilyalli: “Synthesis and Characterisation of Anhydrous Magnesium Phosphate Mg3(PO4)2”, Turk. J. Chem., Vol. 21(4), (1997), pp. 394–400.

  • [28] J.C. Vedrine and F. Delennay (Ed.): Characterisation of Heterogeneous Catalysts, Dekker, New York, 1994.

  • [29] W.S. Kijlstra, E.K. Poels, A. Bliek, B.M. Weckhuysen and R.A. Schoonheyd: “Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy”, J. Phys. Chem. B, Vol. 101, (1997), pp. 309–316.

  • [30] Y. Köseoǧlu, F. Yildiz, J.V. Yakhmi, J. Qin, X. Chen and B. Aktas: “EPR Studies on BEDT-TTF Intercalated MnPS3 Molecular Magnet”, J. Magn. Magn. Mater., Vol. 416–418, (2003), pp. 258–259.


Zeitschrift + Hefte