Investigation on the catalytic activity of doped low-percentage oxide catalysts Mn/ZnO obtained from oxalate precursor

Borjana Donkova 1 , Katja Milenova 2 ,  and Dimitar Mehandjiev 2
  • 1 Department of Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1 J. Bouchier Av., Sofia, 1164, Bulgaria
  • 2 Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl 11, Sofia, 1113, Bulgaria

Abstract

The precursors with a low manganese content ≤ 0.07% Mn were synthesized by spontaneous crystallization from Zn2+, Mn2+ and C2O42−-containing solutions. The initial ratio Zn2+:C2O42− = 1:1 and 1:2 influences the morphology and prevailing orientations of the crystallites in the oxalate samples. The presence of such small Mn content in the samples does not change the morphology or size of the crystals. The ZnO and Mn/ZnO oxides with manganese content from 0.51×10−2 to 15.1×10−2 Wt % are obtained after thermal decomposition of the oxalates. The oxides preserved the morphology of the precursors. The catalytic tests show that the pure ZnO has a poor activity for CO oxidation reaction. Its doping with Mn promotes the catalytic activity (up from twice to five times) in spite of the very low contents of the dopants. The observed increase of the activity depends on both dopant concentration and Zn2+:C2O42− ratio, probably due to the different mechanism of the manganese inclusion and different morphology of the oxides. The catalysts of the 1:2 series are more active in CO oxidation reaction.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.: Condens. Matter. 17, R657 (2005) http://dx.doi.org/10.1088/0953-8984/17/27/R01

  • [2] G.-C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol. 20, S22 (2005) http://dx.doi.org/10.1088/0268-1242/20/4/003

  • [3] Ü. Özgür et al., J. Appl. Phys. 98, art. 041301 (2005)

  • [4] S.J. Pearton et al., Mat. Sci. Eng. R40, 137 (2003)

  • [5] In: C. Jagadish, S. Pearton (Eds), Zinc Oxide Bulk, Thin Films and Nanostructures, 1st edition (Elsevier, Oxford, 2006)

  • [6] K.G. Kanade, B.B. Kale, R.C. Aiyer, B.K. Das, Mater. Res. Bull. 41, 590 (2006) http://dx.doi.org/10.1016/j.materresbull.2005.09.002

  • [7] G.M. Duffy, S.C. Pillai, D.E. McCormack, J. Mater. Chem. 17, 181 (2007) http://dx.doi.org/10.1039/b610947k

  • [8] S.C. Pillai, J.M. Kelly, D.E. McCormack, P. O’Brien, R. Ramesh, J. Mater. Chem. 13, 2586 (2003) http://dx.doi.org/10.1039/b306280e

  • [9] L. Guo, Y. Ji, H. Xu, Z. Wu, P. Simon, J. Mater. Chem. 13, 754 (2003) http://dx.doi.org/10.1039/b210472e

  • [10] T. Ahmad, S. Vaidya, N. Sarkar, S. Ghosh, A.K. Ganguli, Nanotechn. 17, 1236 (2006) http://dx.doi.org/10.1088/0957-4484/17/5/012

  • [11] L. Yang, G. Wang, C. Tang, H. Wang, L. Zhang, Chem. Phys. Lett. 409, 337 (2005) http://dx.doi.org/10.1016/j.cplett.2005.05.015

  • [12] S.C. Pillai, J.M. Kelly, D.E. McCormack, R. Ramesh, J. Mater. Chem. 14, 1572 (2004) http://dx.doi.org/10.1039/b400927d

  • [13] H. Niu, Q. Yang, K. Tang, Y. Xie, F. Yu, J. Mater. Sci. 41, 5784 (2006) http://dx.doi.org/10.1007/s10853-006-0119-3

  • [14] C.J. Cong, L. Liao, J.C. Li, L.X. Fan, K.L. Zhang, Nanotechn. 16, 981 (2005) http://dx.doi.org/10.1088/0957-4484/16/6/060

  • [15] C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Nanotechn. 17, 1520 (2006) http://dx.doi.org/10.1088/0957-4484/17/5/059

  • [16] S. Thota, T. Dutta, J. Kumar, J. Phys.: Condens. Matter. 18, 2473 (2006) http://dx.doi.org/10.1088/0953-8984/18/8/012

  • [17] W. Doerffler, K. Hauffe, J. Catal. 3(2), 171 (1964) http://dx.doi.org/10.1016/0021-9517(64)90124-1

  • [18] G.I. Tcheejeekova, Kin. Cat. 7(4), 666 (1966) (in Russian)

  • [19] W. Komatsu, H. Ooki, I. Naka, A. Kobayashi, J. Catal. 15(1), 43 (1969) http://dx.doi.org/10.1016/0021-9517(69)90006-2

  • [20] P. Amigues, S.J. Teichner, Discuss. Far. Soc. 41, 362 (1966) http://dx.doi.org/10.1039/df9664100362

  • [21] B. Donkova, J. Pentsheva, M. Djarova, Cryst. Res. Technol. 39(3), 207 (2004) http://dx.doi.org/10.1002/crat.200310172

  • [22] J. Pencheva, B. Donkova, M. Djarova, Cryst. Res. Technol. 40, 370 (2005) http://dx.doi.org/10.1002/crat.200410353

  • [23] B.V. Donkova, PhD thesis, University of Sofia (Sofia, BG, 2005) (in Bulgarian)

  • [24] J.A. Allen, J. Phys. Chem. 57, 715 (1953) http://dx.doi.org/10.1021/j150508a027

  • [25] R. Deyrieux, C. Berro, A. Peneloux, Bull. Soc. Fr. Mineral. Cristallogr. 1, 25 (1973)

  • [26] A. Packter, P. Chauhan, Krist. Tech. 10(6), 621 (1975) http://dx.doi.org/10.1002/crat.19750100606

  • [27] I.V. Melikhov, E. Kirkova, M.D. Djarova, J. Cryst. Growth 53, 547 (1981) http://dx.doi.org/10.1016/0022-0248(81)90138-X

  • [28] M. Djarova, M. Tchaneva, J. Cryst. Growth 79, 636 (1986) http://dx.doi.org/10.1016/0022-0248(86)90531-2

  • [29] M. Djarova, A.E. Nielsen, Ann. Univ. Sofia, Fac. Chim. 84, 49 (1992)

  • [30] V. Kraus, J. Nolze, Powder Cell, version 2.4, (2000).

  • [31] C. Pierce, J. Phys. Chem. 57, 149 (1953) http://dx.doi.org/10.1021/j150503a005

  • [32] N. Audebrand, J.-P. Auffrédic, D. Louër, Chem. Mater. 10, 2450 (1998) http://dx.doi.org/10.1021/cm980132f

  • [33] D. Dollimore, D. Nicholson, J. Chem. Soc., 908 (1964)

  • [34] V. Bolis, B. Fubini, E. Giamello, A. Reller, J. Chem. Soc. Far. Trans. 85(4), 855 (1989) http://dx.doi.org/10.1039/f19898500855

  • [35] IUPAC Recommendation 1984, Pure Appl. Chem. 57, 603 (1985) http://dx.doi.org/10.1351/pac198557040603

  • [36] M. Bowker, H. Houghton, K.C. Waugh, T. Giddings, M. Green, J. Catal. 84(1), 252 (1983) http://dx.doi.org/10.1016/0021-9517(83)90105-7

OPEN ACCESS

Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Search