Estimation of n-octanol/water partition coefficients of polycyclic aromatic hydrocarbons by quantum chemical descriptors

Gui-Ning Lu, Xue-Qin Tao 2 , Zhi Dang 1 , Xiao-Yun Yi 1 , and Chen Yang 1
  • 1 School of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P.R. China
  • 2 Department of Environmental Science and Engineering, Zhongkai University of Agriculture and Technology, Guangzhou, 510225, P.R. China
  • 3 Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA

Abstract

Quantitative structure-property relationship (QSPR) modeling is a powerful approach for predicting environmental behavior of organic pollutants with their structure descriptors. This study reports an optimal QSPR model for estimating logarithmic n-octanol/water partition coefficients (log K OW) of polycyclic aromatic hydrocarbons (PAHs). Quantum chemical descriptors computed with density functional theory at B3LYP/6-31G(d) level and partial least squares (PLS) analysis with optimizing procedure were used for generating QSPR models for log K OW of PAHs. The squared correlation coefficient (R 2) of the optimal model was 0.990, and the results of crossvalidation test (Q 2cum=0.976) showed this optimal model had high fitting precision and good predictability. The log K OW values predicted by the optimal model are very close to those observed. The PLS analysis indicated that PAHs with larger electronic spatial extent and lower total energy values tend to be more hydrophobic and lipophilic.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] N.T. Edwards, J. Environ. Qual. 12, 427 (1983) http://dx.doi.org/10.2134/jeq1983.00472425001200040001x

  • [2] C.E. Cerniglia, Biodegradation 3, 351 (1992) http://dx.doi.org/10.1007/BF00129093

  • [3] K.C. Jones, J.A. Stratford, K.S. Waterhouse, E.T. Furlong, W. Giger, R.A. Hites, C. Schaffner, A.E. Johnston, Environ. Sci. Technol. 23, 95 (1989) http://dx.doi.org/10.1021/es00178a012

  • [4] D.J. Freeman, F.C.R. Cattell, Environ. Sci. Technol. 24, 1581 (1990) http://dx.doi.org/10.1021/es00080a019

  • [5] W. Lijinsky, Mutat. Res. 259, 251 (1991) http://dx.doi.org/10.1016/0165-1218(91)90121-2

  • [6] J.P. Meador, J.E. Stein, W.L. Reichert, U. Varanasi, Rev. Environ. Contam. Toxicol. 143, 79 (1995)

  • [7] A. Stella, M.T. Piccardo, R. Coradeghini, A. Redaelli, S. Lanteri, C. Armanino, F. Valerio, Anal. Chim. Acta 461, 201 (2002) http://dx.doi.org/10.1016/S0003-2670(02)00274-X

  • [8] S.K. Samanta, O.V. Singh, R.K. Jain, Trends Biotech. 20, 243 (2002) http://dx.doi.org/10.1016/S0167-7799(02)01943-1

  • [9] X.Q. Tao, G.N. Lu, Z. Dang, C. Yang, X.Y. Yi, Process Biochem. 42, 401 (2007) http://dx.doi.org/10.1016/j.procbio.2006.09.018

  • [10] J. Jacob, Pure Appl. Chem. 68, 301 (1996) http://dx.doi.org/10.1351/pac199668020301

  • [11] D. Mackay, D. Callcot, Partitioning and physical properties of PAHs. In: A.H. Neilson, (Ed.), The handbook of environmental chemistry, Vol. 3, Part J. PAHs and related compounds. (Springer, Berlin, 325, 1998)

  • [12] M.M.C. Ferreira, Chemosphere, 44, 125 (2001) http://dx.doi.org/10.1016/S0045-6535(00)00275-7

  • [13] F.A.D. Ribeiro, M.M.C. Ferreira, J. Mol. Struc. Theochem 663, 109 (2003) http://dx.doi.org/10.1016/j.theochem.2003.08.107

  • [14] A. Sabljiæ, H. Güsten, H. Verhaar, J. Hermens, Chemosphere 31, 4489 (1995) http://dx.doi.org/10.1016/0045-6535(95)00327-5

  • [15] M.T.D. Cronin, D.J. Livingstone, Predicting chemical toxicity and fate. (CRC Press LLC, Baca Raton, Florida, 2004)

  • [16] W. Zhou, Z.C. Zhai, Z.Y. Wang, L.S. Wang, J. Mol. Struc. Theochem 755, 137 (2005) http://dx.doi.org/10.1016/j.theochem.2005.08.020

  • [17] W. Chu, K.H. Chan, Sci. Total Environ. 248, 1 (2000) http://dx.doi.org/10.1016/S0048-9697(99)00472-6

  • [18] C.M. Auer, M. Zeeman, J.V. Nabholz, R.G. Clements, SAR QSAR Environ. Res. 2, 29 (1994) http://dx.doi.org/10.1080/10629369408028838

  • [19] S.C. Basak, B.D. Gute, G.D. Grunwald, J. Chem. Inf. Comp. Sci. 36, 1054 (1996) http://dx.doi.org/10.1021/ci960024i

  • [20] J. Huuskonen, J. Chem. Inf. Comp. Sci. 40, 773 (2000) http://dx.doi.org/10.1021/ci9904261

  • [21] J.W. Chen, X.Y. Xue, K.W. Schramm, M. Quan, F.L. Yang, A. Kettrup, Comput. Biol. Chem. 27, 165 (2003) http://dx.doi.org/10.1016/S0097-8485(02)00017-7

  • [22] M.T. Sacan, M. Ozkul, S.S. Erdem, SAR QSAR Environ. Res. 16, 443 (2005) http://dx.doi.org/10.1080/10659360500320602

  • [23] H.X. Zhao, Q. Zhang, J.P. Chen, X.Y. Xue, X.M. Liang, Chemosphere 59, 1421 (2005) http://dx.doi.org/10.1016/j.chemosphere.2004.12.024

  • [24] J.W. Zou, Y.J. Jiang, G.X. Hu, M. Zeng, S.L. Zhuang, Q.S. Yu, Acta Phys. Chim. Sin. 21, 267 (2005)

  • [25] G.Y. Yang, X.C. Zhang, Z.Y. Wang, H.X. Liu, X.H. Ju, J. Mol. Struc. Theochem 766, 25 (2006) http://dx.doi.org/10.1016/j.theochem.2006.03.027

  • [26] X.C. Zhang, J. Yu, Z.Y. Wang, H.X. Liu, Chinese J. Struc. Chem. 25, 823 (2006)

  • [27] P. Gramatica, M. Corradi, V. Consonni, Chemosphere 41, 763 (2000) http://dx.doi.org/10.1016/S0045-6535(99)00463-4

  • [28] S.C. Basak, D. Mills, D.M. Hawkins, H.A. El-Masri, SAR QSAR Environ. Res. 13, 649 (2002) http://dx.doi.org/10.1080/1062936021000043409

  • [29] G.N. Lu, Z. Dang, X.Q. Tao, X.P. Chen, X.Y. Yi, C. Yang, QSAR Comb. Sci. 26, 182 (2007) http://dx.doi.org/10.1002/qsar.200530176

  • [30] G.N. Lu, Z. Dang, X.Q. Tao, C. Yang, X.Y. Yi, Sci. Total Environ. 373, 289 (2007) http://dx.doi.org/10.1016/j.scitotenv.2006.08.045

  • [31] S.C. Basak, D. Mills, Arkivoc (ii), 60 (2005)

  • [32] P. Thanikaivelan, V. Subramanian, J.R. Rao, B.U. Nair, Chem. Phys. Lett. 323, 59 (2000) http://dx.doi.org/10.1016/S0009-2614(00)00488-7

  • [33] S. Trohalaki, R. Pachter, SAR QSAR Environ. Res. 14, 131 (2003) http://dx.doi.org/10.1080/1062936031000073153

  • [34] S. Trohalaki, E. Gifford, R. Pachter, Comput. Chem. 24, 421 (2000) http://dx.doi.org/10.1016/S0097-8485(99)00093-5

  • [35] G.N. Lu, Z. Dang, X.Q. Tao, P.A. Peng, D.C. Zhang, J. Theor. Comp. Chem. 4, 811 (2005) http://dx.doi.org/10.1142/S0219633605001817

  • [36] Z.Y. Wang, Z.C. Zhai, L.S. Wang, QSAR Comb. Sci. 24, 211 (2005) http://dx.doi.org/10.1002/qsar.200430873

  • [37] J.W. Gao, X.Y. Wang, X.B. Li, X.L. Yu, H.L. Wang, J. Mol. Model. 12, 513 (2006) http://dx.doi.org/10.1007/s00894-005-0086-7

  • [38] J.W. Gao, X.Y. Wang, X.L. Yu, X.B. Li, H.L. J. Mol. Model. 12, 521 (2006) http://dx.doi.org/10.1007/s00894-005-0087-6

  • [39] M. J. Frisch et al., Gaussian 03, Revision B.01, Gaussian, Inc. Pittsburgh PA, 2003.

  • [40] D. Mackay, W.Y. Shiu, K.C. Ma, Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, vol. 3, (Lewis, London, 1998)

  • [41] A.D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913

  • [42] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 56, 2257 (1972) http://dx.doi.org/10.1063/1.1677527

  • [43] S. Wold, M. Sjöström, L. Eriksson, Chemometr. Intell. Lab. Syst. 58, 109 (2001) http://dx.doi.org/10.1016/S0169-7439(01)00155-1

  • [44] R.G. Pearson, P. Natl. Acad. Sci. USA 83, 8440 (1986) http://dx.doi.org/10.1073/pnas.83.22.8440

  • [45] G.D. Veith, O.G. Mekenyan, G.T. Ankley, D.J. Call, Chemosphere 30, 2129 (1995) http://dx.doi.org/10.1016/0045-6535(95)00076-K

  • [46] J.W. Chen, L.R. Kong, C.M. Zhu, Q.G. Huang, L.S. Wang, Chemosphere 33, 1143 (1996) http://dx.doi.org/10.1016/0045-6535(96)00250-0

  • [47] J.W. Chen, W.J.G.M. Peijnenburg, X. Quan, Y.Z. Zhao, D.M. Xue, F.L. Yang, Chemosphere 37, 1169 (1998) http://dx.doi.org/10.1016/S0045-6535(98)00112-X

  • [48] J.W. Chen, W.J.G.M. Peijnenburg, X. Quan, S. Chen, D. Martens, K.W. Schramm, A. Kettrup, Environ. Pollut. 114, 137 (2001) http://dx.doi.org/10.1016/S0269-7491(00)00195-0

  • [49] Umetrics. User’s Guide to SIMCA-P, SIMCA-P+, Version 10.0. (Umetrics AB, Umeå, Sweden, 2002)

  • [50] J.W. Chen, P. Yang, S. Chen, X. Quan, X. Yuan, K.W. Schramm, A. Kettrup, SAR QSAR Environ. Res. 14, 97 (2003) http://dx.doi.org/10.1080/1062936031000073135

  • [51] J.F. Niu, L.P. Huang, J.W. Chen, G. Yu, K.W. Schramm, Chemosphere 58, 917 (2005) http://dx.doi.org/10.1016/j.chemosphere.2004.09.051

  • [52] G.N. Lu, Z. Dang, X.Q. Tao, C. Yang, X.Y. Yi, QSAR Comb. Sci. DOI: 10.1002/qsar.200710014

  • [53] J.C. Faucon, R. Bureau, J. Faisant, F. Briens, S. Rault, Chemosphere 38, 3261 (1999) http://dx.doi.org/10.1016/S0045-6535(98)00558-X

  • [54] O.G. Mekenyan, G.T. Ankley, G.D. Veith, D.J. Call, SAR QSAR Environ. Res. 4, 139 (1995) http://dx.doi.org/10.1080/10629369508029911

OPEN ACCESS

Journal + Issues

Search