Nuclear magnetic resonance spectroscopic studies of the trihexyl (tetradecyl) phosphonium chloride ionic liquid mixtures with water

Jerrod Dwan 1 , Dan Durant 1 ,  and Khashayar Ghandi 1
  • 1 Mount Allison University, Sackville, NB, Canada

Abstract

Tetra-alkyl Phosphonium ionic liquids are phosphonium salts with melting points near room temperature. We report the NMR studies of water-trihexyl (tetradecyl) phosphonium chloride ionic liquid mixtures. The proton chemical shifts were used to investigate the intermolecular interactions in mixtures of ionic liquids and water. The OH chemical shifts were found to decrease as the water concentration in the ionic liquid increased, and their rate of change with temperature decreased with water concentration. The CH2 and CH3 chemical shifts were found to move downfield with the increase in temperature, and moved further downfield as water concentration was decreased. The interface of experimental data and the results of quantum calculations suggest a significant binding of phosphonium cations to chloride anion and water molecules. As well, the analysis of the data suggests a possible transformation from cationchloride-water configuration at low water concentrations to cation-water-water at higher water concentrations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. A. Sheldon, Green Chem. 7, 267 (2005). http://dx.doi.org/10.1039/b418069k

  • [2] R. E. Del Sesto, R. E. Corley, A. Robertson, and J. S. Wilkes, J. Organometallic Chem. 690, 2536 (2005). http://dx.doi.org/10.1016/j.jorganchem.2004.09.060

  • [3] C. Wakai, A. Oleinikova, M. Ott and H. Weingartner, J. Phys. Chem. B. 109, 17028 (2005). http://dx.doi.org/10.1021/jp053946+

  • [4] A. Nose, M. Hojo, and T. Ueda, J. Phys. Chem. B 108, 798 (2004). http://dx.doi.org/10.1021/jp0308312

  • [5] K. Mizuno, S. Imafuji, T. Ochi, T. Ohta, and S. Maeda, J. Phys. Chem. B 104, 11001 (2000). http://dx.doi.org/10.1021/jp001079x

  • [6] A. Coccia, P. L. Indovina, F. Podo, and V. Viti, Phys. Chem. Chem. Phys. 7, 30 (1975)

  • [7] W. Y. Wen, and H. G. Hertz, Solution Chem. 1, 17 (1972). http://dx.doi.org/10.1007/BF00648414

  • [8] P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. De Souza, J. Dupont, J. Chim. Phys. Phys.-Chim. Biol. 5, 1626 (1998). http://dx.doi.org/10.1051/jcp:1998103

  • [9] J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans., 2133 (1999)

  • [10] J. Huang, P. Chen, I. Sun, S. P. Wang, Inorg. Chim. Acta 320, 7 (2001). http://dx.doi.org/10.1016/S0020-1693(01)00477-7

  • [11] A. Mele, C. D. Tran, S. H. De Paoli, Angew. Chem. 115, 4500 (2003). http://dx.doi.org/10.1002/ange.200351783

  • [12] J. H. Juergen, D. Mertens, A. Doelle, P. Wasserscheid, W. R. Carper, ChemPhysChem 4, 588 (2003). http://dx.doi.org/10.1002/cphc.200200603

  • [13] N. E. Heimer, R. E. Del Sesto, W. R. Carper, Magn. Reson. Chem. 42, 71 (2004). http://dx.doi.org/10.1002/mrc.1318

  • [14] J. Antony, D. Mertens, T. Breitenstein, A. Doelle, P. Wasserscheid, W. R. Carper, W. R. Pure Appl. Chem. 76, 255 (2004). http://dx.doi.org/10.1351/pac200476010255

  • [15] S. Lin, M. Ding, C. Chang, S. Lue, S. Tetrahedron 60, 9441 (2004). http://dx.doi.org/10.1016/j.tet.2004.08.022

  • [16] L. A. Blanchard, Z. Gu, J. F. Brennecke, J. Phys. Chem. B. 105, 2437 (2001). http://dx.doi.org/10.1021/jp003309d

  • [17] L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 3, 5192 (2001). http://dx.doi.org/10.1039/b106900d

  • [18] L. N. Mulay, M. Haverbusch, Rev. Sci. Instrum. 35, 756 (1964). http://dx.doi.org/10.1063/1.1746744

  • [19] K. Mizuno, Y. Kimura, H. Morichikab, Y. Nishimurab, S. Shimadab, S. Maedab, S. Imafujib, and T. J. Ochi, J. Mol. Liquids, 85, 139 (2000). http://dx.doi.org/10.1016/S0167-7322(99)00170-1

  • [20] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople; Gaussian, Inc., Wallingford CT, 2004

  • [21] R. Ditchfield, Mol. Phys. 27, 789 (1974). http://dx.doi.org/10.1080/00268977400100711

  • [22] M. Barfiled, P. J. Fagerness, J. Am. Chem. Soc. 119, 8699 (1977). http://dx.doi.org/10.1021/ja970990x

  • [23] J. M. Manaj, D. Maciewska, I. Waver, Magn. Reson. Chem. 38, 482 (2000). http://dx.doi.org/10.1002/1097-458X(200006)38:6<482::AID-MRC677>3.0.CO;2-P

  • [24] J. Palomar, N. S. Dalal, J. Phys. Chem. B. 106, 4799 (2002). http://dx.doi.org/10.1021/jp013486u

  • [25] N. S. Dalal, K. L. Pierce, J. Palomar, R. Fu, J. Phys. Chem. A. 107, 3471 (2003). http://dx.doi.org/10.1021/jp0220478

  • [26] J. F. Hinton, K. Wolinski In: D. Hadi, (Ed.) Theoretical Treatments of Hydrogen Bonding (John Wiley & Sons, 1997)

  • [27] J. Palomar, V. R. Ferro, M. A. Gilarranz, and J. J. Rodriguez, J. Phys. Chem. B. 111, 168 (2007). http://dx.doi.org/10.1021/jp063527s

  • [28] GaussView, Version 3.09, R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland; Semichem, Inc., Shawnee Mission, KS, 2003

  • [29] Y. Yamaguchi, N. Yasutake, and M. Nagaoka, Chem. Phys. Lett. 340, 129 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00347-5

  • [30] K. Modig, B. G. Pfrommer, and B. Halle, Phys. Rev. Lett. 90, 075502 (2003). http://dx.doi.org/10.1103/PhysRevLett.90.075502

  • [31] A. Bagno, F. D’Amico, G. Saielli, J. Phys. Chem. B, 110, 23004 (2006). http://dx.doi.org/10.1021/jp0659453

  • [32] M.M. Hoffmann and M.S. Conradi, J. Am. Chem. Soc. 119, 3811 (1997). http://dx.doi.org/10.1021/ja964331g

  • [33] S. Grigoleit, M. Bühl, J. Chem. Theory Comput. 1, 181 (2005). http://dx.doi.org/10.1021/ct049920o

  • [34] M. Bühl, S. Grigoleit, H. Kabrede, F. T. Mauschick, Chem.-Eur. J. 12, 477 (2006). http://dx.doi.org/10.1002/chem.200500285

  • [35] M. Pavone, G. Brancato, G. Morelli, V. Barone, ChemPhysChem 7, 148 (2006). http://dx.doi.org/10.1002/cphc.200500357

  • [36] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J Chem Phys 104, 5497 (1996). http://dx.doi.org/10.1063/1.471789

  • [37] K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990). http://dx.doi.org/10.1021/ja00179a005

  • [38] T. Köddermann, C. Wertz, A. Heintz, R. ludwig Angew. Chem. Int. Ed 45, 3697 (2006) http://dx.doi.org/10.1002/anie.200504471

OPEN ACCESS

Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Search